

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG Department of Chemistry

for

Postgraduate Programme Master of Science in Chemistry

From the Academic Year 2024-25

CONTENT

- 1. Preamble
- 2. Programme Outcomes
- 3. Programme Specific Outcomes
- 4. Eligibility for Admission
- 5. Methods of Evaluation and Assessments
- 6. Skeleton & Syllabus

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION

1. Preamble

Chemistry plays a pivotal role in all aspects of physical & biological sciences, engineering, agriculture, medicine, and allied health disciplines. The knowledge of chemistry is essential for student to make the sustainable development and face the upcoming societal change. To impart the basic knowledge of science to young women community, the Department of Chemistry started B.Sc. Programme in the year 2017 followed by M.Sc. Chemistry Programme at 2020. The department offers Chemistry program with the aim of producing chemists with high professional competence, in carrying out both basic and applied chemistry research. The department has well equipped with the latest instruments required to carry out practical experiments in the laboratories and separate library with all needed books.

The faculty members have contributed research towards publication of several research papers in national and international conferences and peer reviewed journals. The research has been carried out in frontier areas of chemistry such as environmental chemistry, electrochemistry, nano materials, coordination chemistry, synthetic organic chemistry, photochemistry, polymer chemistry, and green chemistry. As extension activities, our faculty members and students visit remote villages and various industries in training them to develop entrepreneurial skills and competencies.

In the forthcoming academic year, B.Sc. & M.Sc. Chemistry syllabus provides an integrated and unified approach towards chemical sciences covering all branches of chemistry and following Choice Based Credit System with Outcome Based Education. The curriculum is rigorous in accord to international standards and covers theory and practical courses with full emphasis to construct intellectual assets. In the final semester, the PG students are encouraged to carry out research project in reputed research institutions to enhance their exposure level and placement abilities.

2. PROGRAMME OUTCOMES (PO)

Programme	M.Sc., Chemistry
Programme Code	PS07
Duration	2 years [PG]
	PO1: Disciplinary Knowledge: Acquire knowledge in chemistry and apply the knowledge in their day-to-day life for betterment of self and society.
	PO2: Cognitive and Problem-Solving Skills: Develop critical, analytical thinking and problem-solving skills.
	PO3: Societal and Environmental Impact: Address and develop solutions for societal and environmental needs at local, regional, and national levels.
	PO4: Research-Related Skills : Develop research skills in defining problems, formulating and testing hypotheses, analyzing, interpreting, and drawing conclusions from data.
Programme Outcomes	PO5: Employability and Entrepreneurship: Enhance employability and entrepreneurship among students, along with ethical and communication skills.
	PO6: Self-Directed Learning : Work independently and engage in lifelong learning and continuous professional development.
	PO7: Moral and Ethical Awareness/Reasoning : Understand the importance of ethical behavior in professional contexts and be able to recognize and address ethical dilemmas.
	PO8: Lifelong Learning and Adaptability: Be prepared for lifelong learning and professional development, including the ability to adapt to changes in technology, business practices, and economic conditions.

3. PROGRAMME SPECIFIC OUTCOMES (PSO)

	PSO1: Placement: Apply principles of organic, inorganic, and physical chemistry to design and synthesize novel compounds, contributing to advancements in pharmaceuticals, materials science, and sustainable industries.
Programme Specific Outcomes:	PSO2: Research and Development: Develop expertise in Nano Science and Green Chemistry to design and implement sustainable, pollution-free technologies with high accuracy, fostering innovation in environmental protection, industrial applications, and entrepreneurship.
	PSO3: Contribution to the Society: Integrate practical expertise in compound analysis to ensure precision in quality control, research, and innovation, contributing to industrial growth and societal well-being.

4. Eligibility for Admission:

Candidate for admission to the first year of M.Sc., Chemistry shall be required to have passed the UG with Chemistry.

	Methods of Evaluation	
Internal Evaluation	L	25 Marks
External Evaluation	End Semester Examination	75 Marks
	Total	100 Marks
	Methods of Assessment	
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definit	tions
Understand / Comprehend (K2)	MCQ, True/False, Short essays, Concept explanation overview	ons, short summary or
Application (K3)	Suggest idea/concept with examples, suggest form Observe, Explain	nulae, solve problems,
Analyze (K4)	Problem-solving questions, finish a procedure in m Between various ideas, Map knowledge	any steps, Differentiate
Evaluate (K5)	Longer essay/Evaluation essay, Critique or justify with	pros and cons
Create (K6)	Check knowledge in specific or offbeat situations, I Presentations	Discussion, Debating or

5. Methods of Evaluation and Assessments

	Semester - I] [Semester - II				
Code	Course Title	Fitle Hours C					Hours						
		L	Т	P	S	-		Code	Course Title		Distribution		
24PCHC11	CC – 1 Organic Reaction Mechanism-I	3	1	2	0	5			CC – 4 Organic Reactions	L	Т	P	S
24PCHC12	CC – 2 Structure and Bonding	3	1	2	0	3		24PCHC21	Mechanism-II	3	1	2	0
2400110120	in Inorganic Compounds CC - 3 Organic Chemistry	0				2		24PCHC22	CC – 5 Physical Chemistry – I	3	1	2	0
24PCHC13P	Practical	0	0	4	0	3] [24PCHC23P	CC - 6 Inorganic	0	0	4	0
24DCHE11	EC - 1 Nanomaterials and	2	1	1	0	3		24rCnC23P	Chemistry Practical	0	0	4	0

3

3 1 1 0

3 1 1 0 3

1 1 0 0 2

1 1 0 0 2

6. Skeleton & Syllabus

L-Lecture

24PCHE11

24PCHE12

24PCHA11

24PCHR11

Nanotechnology

Spectroscopy

EC – 2 Molecular

Consumer Products

VE - 1 Human Rights

AECC – 1 Chemistry in

T-Tutorial

P-Practical

30 21

S-Seminar

24PCHC24

24PCHE21

24PCHE22

24PCHE23

24PCHE24

24PCHS21

C-Credit

CC – 7 Bio-Inorganic

EC-4 Green Chemistry

EC - 6 Materials Science SEC - 1 (NME) Cosmetic

EC – 3 Medicinal

EC-5 Industrial

Chemistry

Chemistry

Chemistry

Chemistry

С

3

22 30

2 0 4

2 0 4

2 1 1 0 3

2 1 1 0 3

2 1 1 0 3

1 1 0 0 2

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Naan Mudhalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

		v								Mark	5			
Course Code	Course Name	Category	L	T	Р	S	Credits	Hours	CIA	External	Total			
24PCHC11	Core Course 1 - Organic Reaction Mechanism – I	Core	3	1	2	0	5	6	25	75	100			
	Learr	ning O	bjec	tive	S									
LO1	To understand the feas reactions.	sibility	an	d tł	ne 1	me	chan	ism	of var	ious (organic			
LO2	To comprehend the mechanisms.	To comprehend the techniques in the determination of reaction												
LO3	To understand the concept of stereochemistry involved in organic compounds.													
LO4	To correlate and appreciate the differences involved in the various types of organic reaction mechanisms.													
LO5	To design feasible syn compounds.	nthetic	ro	utes	fo	or	the	prep	aration	of (organic			
Unit		Cont	ent							Ho	urs			
1	Methods of Determination of Reaction Mechanism: Reaction intermediates. The transition state, Reaction coordinate diagrams, Thermodynamic and kinetic requirements of reactions: Hammond postulate. Methods of determining mechanism: non-kinetic methods – product analysis, determination of intermediates - isolation, detection, and trapping. Effect of structure on reactivity: Hammett and Taft equations.										8			
2	Aromatic and Alipha Aromaticity: Aromaticity benzenoid, heterocyclic co involving nitrogen electro diazonium coupling; Su	ompou ophiles	ir nds : n	and itrati	be ani ion,	enz nul n	enoi enes nitros	d, . Rea satior	n and	1	8			

	Halogen electrophiles: chlorination and bromination; Carbon	
	electrophiles: Friedel-Crafts alkylation, acylation and	
	arylation reactions. Aliphatic electrophilic substitution	
	Mechanisms: SE_2 and SE_i , SE_1 - Mechanism and evidences.	
	Aromatic and Aliphatic Nucleophilic Substitution: Aromatic	
	nucleophilic substitution: Mechanisms - SNAr, SNi and	
	Benzyne mechanisms - Evidences. Reactivity of nucleophile,	
	Effect of structure, leaving group and attacking nucleophile.	
3	Reactions: Oxygen and Sulphur - nucleophiles, Bucherer and	18
	Rosenmund reactions, Von Richter, Sommelet-Hauser and	
	Smiles rearrangements. SN_1 and SN_2 mechanisms and	
	evidences. Aliphatic nucleophilic substitutions at an allylic	
	carbon, aliphatic trigonal carbon and vinyl carbon.	
	Stereochemistry-I: Racemic modifications: Racemization by	
	thermal, anion, cation, reversible formation, epimerization,	
	mutarotation. D, L system, Cram's and Prelog's rules: R, S	
4	notations, proR, proS, absolute and relative configurations.	
4	Chiral shift reagents and chiral solvating reagents. Criteria for	18
	optical purity: Resolution of racemic modifications,	
	asymmetric transformations and asymmetric synthesis.	
	Stereoselective and stereospecific synthesis.	
	Stereochemistry-II: Conformation and reactivity of acyclic	
	systems, intramolecular rearrangements, neighbouring group	
	participation, chemical consequence of conformational	
	equilibrium - Curtin-Hammett Principle. Stability of five and	
5	six-membered rings: mono-, di- and poly substituted	18
	cyclohexanes, conformation and reactivity in cyclohexane	
	systems. Fused and bridged rings: bicyclic, poly cyclic systems,	
	decalins and Brett's rule. Optical rotation and ORD curves,	
	Cotton effect.	

СО	Course Outcomes
CO1	To recall the basic principles of organic chemistry.
CO2	To understand the formation and detection of reaction intermediates of organic reactions.
CO3	To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.
CO4	To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.
CO5	To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.
Textbo	
1	March J. and Smith M. "Advanced Organic Chemistry", John-Wiley and Sons. 5 th ed., 2001.
2	Gould E. S. "Mechanism and Structure in Organic Chemistry", Holt, Rinehart and Winston Inc., 5 th ed., 1959.
3	Kalsi P. S. "Stereochemistry of Carbon Compounds", NewAge International Publishers, 8 th ed., 2015.
4	Bruice P. Y. "Organic Chemistry", Prentice Hall, 7th ed., 2013.
5	Clayden J, Greeves N. and Warren S. "Organic Compounds", Oxford University Press, 2 nd ed., 2014.
Refere	nce Books:
1	Carey F. A. and Sundberg R. J. "Advanced Organic Chemistry Part-A and B", Kluwer Academic / Plenum Publishers, 5 th ed., 2007.
2	Morris D. G. "Stereochemistry", RSC Tutorial Chemistry Text 1, 2001.
3	Isaacs N. S. "Physical Organic Chemistry", ELBS, Longman, UK, 1987.
4	Eliel E. L. "Stereochemistry of Carbon Compounds", Tata-McGrawHill, 2000.
5	Finar I. L. "Organic chemistry", Vol-1 & 2, 6th ed., Pearson Education Asia, 2004.
Web r	esources:
1	https://www.masterorganicchemistry.com/reaction-guide/
2	https://www.khanacademy.org/science/organic-chemistry/aromatic-
	compounds/reactions-benzene/v/electrophilic-aromatic-substitution
3	https://m.youtube.com/watch?v=Efh5GkVbhEc
4	https://chem.libretexts.org/Courses/Sacramento_City_College/SCC%3A_Chem_420
	<u>-</u> <u>Organic_Chemistry_I/Text/06%3A_Stereochemistry_at_Tetrahedral_Centers/6.01</u> %3A_Chirality
5	https://www.masterorganicchemistry.com/
5	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

		~								Marks			
Course Code	Course Name	Category		T	Р	s	Credits	Hours	CIA	External	Total		
24PCHC12	Core Course 2 - Structure and Bonding in Inorganic Compounds	Core	3	1	2	0	3	6	25	75	100		
	Lear	ning O	bjec	tives									
LO1	To understand the Structural p	ropertie	es of	maiı	n gro	oup	com	pound	ls and c	lusters.			
LO2	To gain fundamental knowledg	ge on st	ructi	ıral a	aspe	cts	of io	nic cr	ystals.				
LO3	To familiarize various diffract	ion and	mic	rosc	opic	tec	hniq	ues.					
LO4	To understand the effect of po	int defe	cts a	nd li	ne d	efe	cts ii	n ionio	c crystal	s.			
LO5	To evaluate the structural aspe	ects of s	solid	s.									
Unit		Cont	ent							Ho	urs		
1	Molecular Geometry: Stru clusters: VB theory – Effec atoms (Bent's rule) on the g silicates - applications of isomorphous replacements silicates – one dimensional, silicates.	et of lo geometr Paulin in silie	ne p y of ng's cates	air a the rul	and mol e o orth	eleo ecu f o	etron les; electi meta	egativ Struct rovale a and	vity of ture of ence -	1	8		
2	Boron Compounds and Clus properties and structure of bor closo, nido, arachno. (B ₂ H ₆ , I cyclic borazines (B ₃ N ₃ H ₆), bo STYX numbers, Wade's rul molecularity metal clusters on – metal bonds.	ranes, h B4H10, 1 pron nit es. Me	ighe B5H1 ride: tal	er bo 11, B s (Bl clust	rane ₆ H ₁₀ N)x ters:	s - , B and Cl	type 10H14 bor nemi	s of b 4) line ates i stry o	oranes ear and ons — of low	1	8		

18			
18			
18			
18			

СО	Course Outcomes
CO1	Predict the geometry of main group compounds and clusters.
CO2	Explain about the packing of ions in crystals and apply the radius ratio rule to predict the
	coordination number of cations.
CO3	Understand the various types of ionic crystal systems and analyze their structural
	features.
CO4	Explain the crystal growth methods.
CO5	To understand the principles of diffraction techniques and microscopic techniques.
Textl	books:
1	West A. R, "Solid state Chemistry and its Applications", 2 nd ed., (Students Edition), John Wiley & Sons Ltd., 2014.
2	Bhagi A. K. and Chatwal G. R, "A Textbook of Inorganic Polymers", Himalaya Publishing House, 2001.
3	Smart L. and Moore E, "Solid State Chemistry – An Introduction", 4th ed., CRC
4	Press, 2012.
4	Purcell K. F. and Kotz J. C, "Inorganic Chemistry", W.B. Saunders Company, Philadelphia, 1977.
5	Huheey J. E, Keiter E. A. and Keiter R. L, "Inorganic Chemistry",4 th ed., Harper and Row, NewYork, 1983.
Refe	rence Books:
1	Douglas D. E, McDaniel D. H. and Alexander J. J, "Concepts and Models in Inorganic Chemistry", 3 rd ed., John Wiley, 1994.
2	Tilley R. J. D, "Understanding Solids - The Science of Materials", 2 nd ed., Wiley Publication, 2013.
3	Rao C. N. R. and Gopalakrishnan J, "New Directions in Solid StateChemistry", 2 nd
	ed., Cambridge University Press, 1986.
4	Moeller T, "Inorganic Chemistry: A Modern Introduction", John Wiley & Sons Ltd., New York, 1982.
5	Shriver D. F, Atkins P. W. and Langford C. H, "Inorganic Chemistry", 3 rd ed., Oxford University Press, London, 2001.
Weh	resources:
1	https://webbook.nist.gov/chemistry/
2	https://ocw.mit.edu/courses/3-091sc-introduction-to-solid-state-chemistry-fall-2010/
3	https://nptel.ac.in/courses/104104101
4	https://foundry.lbl.gov/about/facilities/the-national-center-for-electron-microscopy- ncem/
5	https://ocw.mit.edu/courses/3-185-transport-phenomena-in-materials-engineering-fall- 2003/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

		×				-			Marks		
Course Code	Course Name	Category	L	Т	Р	s	Credits	Hours	CIA	External	Total
24PCHC13P	Core Course 3 - Organic Chemistry Practical	Core	0	0	4	0	3	4	25	75	100
	Learning Objectives										
LO1	To understand the concept organic compounds.	of sepa	ratic	on, q	ualit	ativ	ve ar	nalysis	s and pr	reparatio	on of
LO2	To develop analytical skill i binary and ternary organic n			ing o	of cł	nem	ical	reage	nts for s	separatio	on of
LO3	To analyze the separated or suitably.	ganic c	omp	onen	its s	yste	mati	cally	and der	ivative	them
LO4	To construct suitable experimental setup for the organic preparations involving two stages.										
LO5	To experiment different pu processing.	rificati	on a	and o	dryir	ng	techr	niques	for the	e comp	ound
Unit		Cont	ent							Ho	urs
1	Separation and analysis: a) Two component mixtur	es. Terr	nary	com	pone	ent	(Den	no)		1	2
2	Estimations: 12 a) Estimation of Phenol (Bromination) 12 b) Estimation of Aniline (Bromination) 12					2					
3	Estimations: a) Estimation of Glucose (Redox) b) Estimation of Glycine (Acidimetry) c) Estimation of Amino group (Acetylation)							2			

	Preparation of Organic Compounds (Single stage):	
	a) Methyl-m-nitro benzoate from ethyl benzoate (nitration)	
	b) Benzo phenone oxime from benzophenone (addition)	
4	c) o-Chlorobenzoic acid from anthranilic acid (Sand mayer reaction)	12
	d) p-Benzoquinone from hydroquinone (oxidation)	
	e) Phenylazo-2-naphthol from aniline (diazotization)	
	Preparation of Organic Compounds (Two stages):	
	a) p-Bromoacetanilide from aniline	
	b) p-Nitroaniline from acetanilide	
5	c) Acetyl salicyclic acid from methyl salicylate	12
	d) Benzilic acid from benzoin	
	e) m-Nitrobenzoic acid from methyl benzoate	

SCHEME OF VALUATION 24PCHC13P - ORGANIC CHEMISTRY PRACTICAL

Internal assessment	: 25 Marks
External assessment	: 75 Marks
Total	: 100 Marks
Max. Marks	: 75 Marks
Estimation	: 30 Marks
Preparation of Organic Compounds	: 30 Marks
Record	: 10 Marks
Viva voce	: 5 Marks

СО	Course Outcomes
CO1	To recall the basic principles of organic separation, qualitative analysis and preparation.
CO2	To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.
CO3	To determine the characteristics of separation of organic compounds by various chemical reactions.
CO4	To develop strategies to separate, analyze and prepare organic compounds.
CO5	To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.
Textb	ooks:
1	Mohan, "Organic Analytical Chemistry: Theory and Practice", Narosa, 2003.
2	Ahluwalia V. K, Bhagat ., and Agarwal R, "Laboratory Techniques in Organic Chemistry", I. K. International, 2005.
3	Gnanaprakasam N. S. and Ramamurthy G, "Organic Chemistry Lab Manual", S. V. Printers, 1987.
4	Vogel A. I, Tatchell A. R, Furniss B. S, Hannaford A. J. and Smith P. W. G, "Vogel's Textbook of Practical Organic Chemistry", 5 th ed., Prentice Hall, 1989.
5	Jonathan Clayden, Nick Greeves and Stuart Warren, "Organic Practical: Techniques and Transformations", Oxford University Press, 2014.
Refer	ence Books:
1	Tatchell A. R, Furniss B. S, Hannaford A. J, Smith P. W. G. and Tatchell A. R,
	"Vogel's Textbook of Practical Organic Chemistry", Pearson Education Ltd., 2009.
2	Hayden-McNeil, "Organic Chemistry Laboratory Notebook", Hayden-McNeil
	Publishing, 2010.
3	John C. Gilbert and Stephen F. Martin, "Experimental Organic Chemistry: A
	Miniscale & Microscale Approach", Cengage Learning, 2015.
4	Jerry R. Mohrig, David Alberg, Gretchen Hofmeister, and Paul F. Schatz,
	"Techniques in Organic Chemistry", W. H. Freeman, 2010.
5	James W. Zubrick, "Organic Chemistry: A Laboratory Manual", Wiley, 2001.
Web	resources:
1	https://www.ncbi.nlm.nih.gov/books/NBK547700/
2	https://webbook.nist.gov/chemistry/
3	https://www.nist.gov/publications/certification-standard-reference-materialr-917d-d- glucose-dextrose
4	https://chem.libretexts.org/Courses/Sonoma State University/SSU Chem 335B/Mat
	erial_for_Exam_3/Chapter_18%3A_Electrophilic_Aromatic_Substitution/18.4_Nitrati
	on_and_Sulfonation
5	https://www.masterorganicchemistry.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

									Marks		
Course Code	Course Name	Category	L	T	Р	S	Credits	Hours	CIA	External	Total
24PCHE11	Elective Course 1 - Nanomaterials and Nanotechnology	Elective	3	1	1	0	3	5	25	75	100
	Learning Objectives										
LO1	To learn about the synthe	esis and ch	emic	al pr	oces	ss o	f nar	noscie	nce.		
LO2	To understand the variou	s types of	nano	mat	erial	ls a	nd th	eir pr	operties		
LO3	To analyse the various ap	oplication of	of na	note	chnc	olog	gy in	reme	diation o	of pollu	tion.
LO4	To apply principles and o TEM.	characteriz	atior	ofr	ano	scie	ence	by XI	RD, SEN	И, EDA	Х,
LO5	To understand the applic	ations of sy	ynthe	etica	lly iı	mpo	ortan	t nanc	o materia	als.	
Unit		Cont	ent							Ho	urs
1	Synthesis of Nanomaterials by Chemical Processes: Introductionto nanomaterials and nanotechnologies. Chemical precipitation andco-precipitation, polyol – borohydride reduction methods – Sol-Gelsynthesis; Microemulsions synthesis – Hydrothermal –Solvothermal synthesis methods – Microwave assisted synthesis –Sonochemical assisted synthesis – Core-Shell nanostructure –Quantum dot (QDs) synthesis.							5			
2	Structural Properties of Nanomaterials: Bonding and structure of the nano materials, predicting the type of bonding in a substance crystal structure. Metallic nano particles, surfaces of materials, nanoparticle Size. Techniques to study the following properties of nanomaterials - Thermal, mechanical and electrical properties.15						5				
3	Nanotechnology- EnvironmentalandHealthEffects:Environmental pollutants in air, water, soil, hazardous and toxic15wastes – application of nanotechnology in remediation of pollution15							5			

	- The challenge to occupational health and hygiene - toxicity of	
	nanoparticles – effects of inhaled nanosized particles – skin	
	exposure to nanoparticles - impact of CNTs on respiratory systems	
	- hazards and risks of exposure to nanoparticles - monitoring	
	nanoparticles in workplace and sensors.	
	Nanostructured Materials Characterization Techniques: X-ray	
	diffraction (XRD) - SEM - EDAX - TEM - Elemental mapping -	
	FTIR – UV Visible spectrophotometer – Laser Raman Spectroscopy	
4	– Thermo gravimetric Analysis (TGA), Differential Scanning	15
	Calorimeter (DSC) – Differential Thermal Analyzer (DTA) – X-ray	
	Photoelectron Spectroscopy (XPS).	
	Nanocomposite Materials and Nanolubricants	
	Nanocomposites - Types of nanocomposites - Organic and	
	Inorganic hybrid nanocomposites -Polymer matrix composites,	
	metal matrix composites, ceramic matrix composites; Applications	
5	of composites in drug delivery, automobiles and aerospace	15
	industries.	
	Nanolubricants - Classification, properties and mechanism of	
	different types of nanolubricants.	

СО	Course Outcomes
CO1	To explain methods of fabricating nanostructures.
CO2	To relate the unique properties of nanomaterials to reduce dimensionality of the material.
CO3	To understand the health and safety related to nanomaterials.
CO4	To familiar with analytical techniques used to characterize nanomaterials, such as SEM, TEM, XRD), and spectroscopic methods (UV-Vis, FTIR, Raman).
CO5	To discuss applications of nanocomposites and nanolubricants
Text	books:
1	Sanjay Mathur and Mrityunjay Singh, "Nanostructured Materials and
	Nanotechnology", 2 nd ed., Willey, 2008.
2	Carl C. Koch, "Nanostructured Materials", Noyes Publications, New York, 2002.
3	Nazri G. A. and Pistoia G, "Science and Technology", Kulwer Acdemic Publishers,
	Dordrecht, Netherlands, 2004.
4	Brown P. and Stevens K, "Nanofibers and Nanotechnology in Textiles", Woodhead
	publication London, 2006.
5	Altmann J. and Routledge, "Military Nanotechnology: Potential Applications and
	Preventive Arms Control", Taylor and Francis Group, 2006.
Refe	rence Books:
1	Chattopadhyay K, "An Introduction to Nanoscience and Nanotechnology", Prentice Hall Learning Pvt. Ltd, 2009.
2	Shi D, Aktas B, Pust L. and Mikailov F, "Nanostructured Magnetic Materials and their Applications", Springer, 2002.
3	Victor E. Borisenko, "A Handbook on Nanoscience and Nanotechnology", Wiley VCH, 2008.
4	Pradeep T, "A Textbook of Nanoscience and Nanotechnology", McGraw Hill Education, 2017.
5	Hari Singh Nalwa, "Encyclopedia of Nanoscience and Nanotechnology", American Scientific Publishers, 2004.
Web	resources:
1	https://www.nano.gov/
2	https://ocw.mit.edu/courses/3-091sc-introduction-to-solid-state-chemistry-fall-2010/
3	https://pubmed.ncbi.nlm.nih.gov/
4	https://www.thermofisher.com/us/en/home/materials-science/learning-center/scanning-
	electron-microscopy.html
5	https://www.asminternational.org/asm-handbook-volume-21-composites/results/-
	/journal_content/56/06781G/PUBLICATION/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

		x								Marks		
Course Code	Course Name	Category	L	T	Р	S	Credits	Hours	CIA	External	Total	
24PCHE12	Elective Course – 2 Molecular Spectroscopy	Elective	3	1	1	0	3	5	25	75	100	
Learning Objectives												
LO1	To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.											
LO2	Understand the princip	oles of vibra	tion	al sp	ectr	osc	ору.					
LO3		To highlight the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions.										
LO4	Gain knowledge of the NMR, fine structure of ESR absorption, Hyperfine structure, double resonance in ESR and techniques of ESR spectroscopy.											
LO5	To carry out the strutechniques.	uctural eluc	idati	on (of n	nole	ecule	es usi	ng diff	erent sj	pectral	
Unit		Cont	ent							Ho	urs	
1	Rotational and Raman Spectroscopy: Rotational spectra of diatomic and polyatomic molecules. Intensities of rotational spectral lines, effect of isotopic substitution. Non-rigid rotators. Classical theory of the Raman effect, polarizability as a tensor, polarizability ellipsoids, quantum theory of the Raman effect, Stokes and anti- Stokes lines. Vibrational Raman spectra, Raman activity of						1	5				
2	vibrations, rule of mutual exclusion. Vibrational Spectroscopy: Vibrations of molecules, harmonic and anharmonic oscillators - vibrational energy expression, energy level diagram. Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer approximation. Vibrations of polyatomic molecules – symmetry properties, overtone and combination frequencies.						5					

3	Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and pre- dissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles, photoelectron spectra of simple molecules. Lasers: Laser action, population inversion properties of laser radiation, examples of simple laser systems.	15
4	NMR and ESR Spectroscopy: Spin-spin interactions: Homonuclear coupling interactions - AX, AX ₂ , AB types. ¹³ C NMR and structural correlations, Satellites. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; The g value and the hyperfine coupling parameter. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling.	15
5	 Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation. EPR spectra of anisotropic systems - anisotropy in g value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Practice: Structural elucidation of simple organic molecules by UV- Visible, FT-IR, NMR, and Mass spectral data. 	15

СО	Course Outcomes
CO1	To understand the importance of rotational and Raman spectroscopy.
CO2	To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.
CO3	To evaluate different electronic spectra of simple molecules using electronic spectroscopy.
CO4	To perform the most commonly used NMR and ESR spectroscopy to interpret the chemical compounds and their characteristics.
CO5	To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass, EPR and Mossbauer Spectroscopy.
Textbo	
1	Banwell C. N. and McCash E. M, "Fundamentals of Molecular Spectroscopy", 4th Ed., Tata
	McGraw Hill, New Delhi, 2000.
2	Silverstein R. M. and Webster F. X, "Spectroscopic Identification of Organic Compounds",
	6 th ed., John Wiley & Sons, New York, 2003.
3	Kemp W, "Applications of Spectroscopy", English Language Book Society, 1987.
4	Williams D. H. and Fleming I, "Spectroscopic Methods in Organic Chemistry", 4th ed., Tata
	McGraw-Hill Publishing Company, New Delhi, 1988.
5	Straughan B. P. and Walker S, "Spectroscopy", Vol.3, Halstead Press, Sydney, 1978.
Refere	nce Books:
1	Barrow G. M, "Introduction to Molecular Spectroscopy", McGraw Hill, NewYork, 1964.
2	Sharma Y. R, "Elementary Organic Spectroscopy–Principles and Chemical
	Applications, S.Chand, New Delhi, 1992.
3	Rahman A, "Nuclear Magnetic Resonance-Basic Principles", Springer-Verlag, New York,
	1986.
4	Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds -
	PartB", 5th ed., John Wiley & Sons Inc., New York, 1997.
5	Weil J. A, Bolton J. R. and Wertz J. E, "Electron Paramagnetic Resonance", Wiley
	Interscience, 1994.
Web r	esources:
1	https://www.nist.gov/spectroscopy
2	https://cccbdb.nist.gov/
3	https://webbook.nist.gov/chemistry/
4	https://nationalmaglab.org/user-facilities/nmr-mri-s/
5	https://acsanalytical.org/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

		x							Marks			
Course Code	Course Name	Category	L	T	Р	s	Credits	Hours	CIA	External	Total	
24PCHA11	Ability Enhancement Compulsory Course 1 - Chemistry in Consumer Products	Compulsory Course 1 - Chemistry in Consumer AEC 1		1	0	0	2	2	25	75	100	
	Lear	ning O	bjec	tives	5							
LO1	To learn step-by-step proces	s of va	rious	type	es of	soa	ap m	anufa	cturing.			
LO2	To explore the formulation a	and dev	elop	ment	t of o	dete	ergen	t proc	lucts.			
LO3	To gain knowledge of com waxes, colors, preservatives				als	useo	d in	cosm	etics, in	cluding	oils,	
LO4	To understand the cosmetic formulation principles, including the selection of active ingredients, excipients, and additives to achieve desired skincare effects.											
LO5	To identify common toxic products.	chemic	al in	gred	lient	s fc	ound	in sk	incare a	und toile	etries	
Unit		Cont	ent							Но	urs	
1	Soaps: Types of Soaps, ma soaps – different ingredier herbal soaps and antibacteria	nts used	1 - 1							(5	
2	Detergents: Types of deter detergents – manufactures a Green detergents - sustainab	gents - and app	ani licat	ions;						(5	
3	Cosmetics: Cosmetics - cosmetics - (oil, waxes, colo - different kinds shampoo – shampoo, hair dye – manufa uses only).	Introdu or, prese anti-da	iction ervat ndru	n al ive a iff, a	ınd f nti-l	rag ice,	ranco herł	e). Sh pal an	ampoo d baby	6	5	
4	Skin Care Products: Prepa lighteners, sun screen lotio Lip care - lip gloss – lips creams, Sun cream and UV	ns - sk sticks -	in to lip	oners line	ant rs, r	i w nois	rink	ling c	reams.	6	5	
5	Toxicity: Toxic chemical in products – carcinogens; p releasing agents, fragrances sulfate, and colorants - coal	gredien reserva - phtha	its – tives ilates	skino 5 - p	care arat	pro oens	s, foi	rmald	ehyde-	(5	

СО	Course Outcomes
CO1	To learn about various soap making techniques.
CO2	To understand the structure-property relationships of surfactants in detergents.
CO3	To apply the knowledge to develop cosmetic products with desired properties.
CO4	To understand the cosmetic formulation principles, including the selection of active
	ingredients, excipients, and additives to achieve desired skincare effects for both skin
	and hair products.
CO5	To explore the adverse health effects associated with harmful chemicals found in skincare
	and toiletries products.
Textbo	ooks:
1	David A. Katz and Richard A. Lawton, "Chemistry of Household Products", Thomson
	Learning, 2001.
2	Richard J. Farn, "Chemistry and Technology of Surfactants", Blackwell Publishing, 2006.
3	NIIR Board, "Modern Technology of Cosmetics", Asia Pacific Business Press Inc., New
	Delhi, 2004.
4	Ernest W. Flick, "Cosmetic and Toiletry Formulations", Noyes Publications, 2001.
5	D. F. Williams and W. H. Schmitt, "Chemistry and Technology of Cosmetics and
	Toiletries", Blackie Academic & Professional, 1992.
Refere	nce Books:
1	André O. Barel, Marc Paye, and Howard I. Maibach, "Handbook of Cosmetic Science and
	Technology", CRC Press, 2001.
2	Charles S. Sell, "Chemistry of Fragrances: From Perfumer to Consumer", Royal Society of
	Chemistry, 2006.
3	Michael Showell, "Handbook of Detergents, Part F: Production", CRC Press, 2009.
4	Romanowski P. and Schueller R, "Beginning Cosmetic Chemistry: Practical Knowledge for
	the Cosmetic Industry", Allured Books, 3 rd ed., 2009.
5	John Toedt, Darrell Koza, and Kathleen Van Cleef-Toedt, "Chemical Composition of
	Everyday Products", Greenwood, 2005.
Web r	esources:
1	https://www.gutenberg.org/
2	https://openlibrary.org/
3	https://www.cleaninginstitute.org/
4	https://www.aad.org/
5	https://www.ewg.org/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

		y								Mark	S
Course Code	Course Name	Category	L	Т	Р	s	Credits	Hours	CIA	External	Total
24PCHC21	Organic Reaction Mechanism - II	Core	3	1	2	0	4	6	25	75	100
LO1	Learning Objectives To understand the concept of aromaticity in benzenoid, non-benz										
LO2	heterocyclic and annulene compounds. To understand the mechanism involved in various types of organic reactions										ons with
LO3	evidences. To understand the app	lication	us of	cunth	otical	ly imr	ortan	tran	ranta		
LO3 LO4	To correlate the reacti			•		• •			-	ls.	
LO5	To design synthetic ro	•		-					-		
Unit			-	Conte	-		8				Hours
1	Elimination and Free Radical Reactions: Mechanisms: E_2 , E_1 , and E_1cB mechanisms. Syn- and anti-eliminations. Orientation of the double bond: Hoffmann and Saytzeff rules. Reactivity: Effect of substrate, attacking bases, leaving group and medium. Long lived and short-lived radicals – Production of radicals by thermal and photochemical reactions, Detection and stability of radicals, characteristics of free radical reactions - Reactions of radicals: Polymerization, addition, halogenations, aromatic substitutions, rearrangements. Reactivity: Reactivity on aliphatic, aromatic substrates, reactivity in the attacking radical, effect of solvent.										18
2	Oxidation and Re reactions: Dehydrogen permanganate, osmiu alcohols, halides and a - oxidative decarboxy trioxide-pyridine, DM Kim oxidation, dimeth DCCD). Mechanism of Rosenmund, McFadyo systems, MPV and Bo	nation b m tetro amines. ylation, ISO-Ox nyl sulp of reduc en-Stev	oy qu oxide Rea all alyl hox ction en's	uinone e, oxio action ylic c chlor ide- d react redu	es, seld dation s invo oxidati ide (S icyclo ions: V action	enium of si olving ion, o Swern ohexyl Wolff- , Hyc	dioxi aturat cleav xidati oxida carbo -Kishi	des, ed h age c on b ation odiim	ydrocar of C-C oy chro) and C nide (D)	anide, rbons, bonds mium Corey- MSO- enson,	

	Rearrangements: Rearrangements to electron deficient carbon: Pinacol -								
	pinacolone and semi-pinacolone rearrangements - applications and								
	stereochemistry, Wagner-Meerwein, Demjanov, Dienone-phenol,								
	Baker-Venkataraman, Benzilic acid and Wolff rearrangements.								
	Rearrangements to electron deficient nitrogen: Hofmann, Curtius,								
3	Schmidt, Lossen, Beckmann rearrangements. Rearrangements to								
C C	electron deficient oxygen: Baeyer-Villiger oxidation and Dakin	10							
	rearrangements. Rearrangements to electron rich atom: Favorskii, Stevens,								
	[1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries								
	rearrangement. Intramolecular rearrangements - Claisen, Cope, Oxy-								
	Cope, Benzidine rearrangements.								
	Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to								
	carbon-carbon multiple bonds- Addition reactions involving electrophiles,								
	nucleophiles, free radicals, Orientation and reactivity, hydrogenation of								
	double and triple bonds, Michael reaction, addition of oxygen and								
4	Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich								
4	reaction, acids, esters, nitrites, Wittig reaction, Prins reaction. Addition of								
	Grignard reagents, organozinc and organolithium reagents to carbonyl and								
	unsaturated carbonyl compounds. Mechanism of condensation reactions								
	involving enolates – Stobbe reactions. Hydrolysis of esters and								
	amides, ammonolysis of esters.								
	Reagents and Modern Synthetic Reactions: Lithium diisopropylamine								
	(LDA), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic								
	acid (m-CPBA), Dimethyl aminiopyridine (DMAP), Triethylamine								
	(TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU),								
	Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD),								
5	<i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl	18							
	piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide								
	(PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), TiCl ₃ , NaIO ₄ ,								
	Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC),								
	Meisenheimer complex. Heck reaction, Negishi reaction, Baylis-Hillman								
	reaction.								

CO	Course Outcomes
CO1	To recall the basic principles of aromaticity of organic and heterocyclic compounds.
CO2	To understand the mechanism of various types of organic reactions.
CO3	To predict the suitable reagents for the conversion of selective organic compounds.
CO4	To correlate the principles of substitution, elimination, and addition reactions.
CO5	To design new routes to synthesis organic compounds.
Textl	pooks:
1.	J. March and M. Smith, "Advanced Organic Chemistry", 5 th ed., John-Wiley and Sons. 2001.
2.	E. S. Gould, " <i>Mechanism and Structure in Organic Chemistry</i> ", 1 st ed., Holt, Rinehart and Winston Inc., 1959.
3.	P. S. Kalsi, " <i>Stereochemistry of carbon compounds</i> ", 8 th ed., New Age International Publishers, 2015.
4.	P. Y. Bruice, "Organic Chemistry", 7th ed., Prentice Hall, 2013.
5	R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee, "Organic Chemistry", 7 th ed., Pearson Education, 2010.
Refe	rence Books:
1.	S. H. Pine, "Organic Chemistry", 5 th ed, McGraw Hill International Edition, 1987.
2.	L. F. Fieser and M. Fieser, "Organic Chemistry", 4 th ed., Asia Publishing House, Bombay, 2000.
2	O. P. Agarwal, "Organic Chemistry: Reactions & Reagents", 53 rd ed., Krishna Prakashan Media (P) Ltd., 2015.
4.	T. L. Gilchrist, "Heterocyclic Chemistry", 2 nd ed., Longman Press, 1989.
5.	J. A. Joule and K. Mills, "Heterocyclic Chemistry", 4th ed., John-Wiley, 2010.
Web 1	esources:
1.	https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic
2.	https://www.organic-chemistry.org/
3.	https://www.masterorganicchemistry.com/
4.	https://onlinecourses.nptel.ac.in/
5.	https://www.masterorganicchemistry.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	2	3	3
CO 3	3	3	2	3	3	3	3	2	3	3	2
CO 4	3	2	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	3	3	2	3	3	3
Total	13	14	13	15	14	12	15	13	13	15	14
Average	2.6	2.8	2.6	3.0	2.8	2.6	3.0	2.6	2.6	3.0	2.8

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

1ST YEAR: SECOND SEMESTER

										Ma	rks
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PCHC22	Physical Chemistry - I	Core	3	1	2	0	4	6	25	75	100
	Learning Objectives										
LO1	To recall the fundamentals of thermodynamics and the composition of partiquantities.										artial molar
LO2	To understand the classical			-							
LO3	To compare the signification Einstein.										
LO4	thermodynamic parameters	5.		reac			tes	for	the		luation of
LO5	To study t	the mec	hani	sm a	nd k	ineti	cs of	reac	ctions.		
Unit		Co	onte	nt							Hours
1	Classical Thermodynamics: Partial molar properties - Chemical potential, Gibb's- Duhem equation-binary and ternary systems. Determination of partial molar quantities. Thermodynamics of real gases - Fugacity- determination of fugacity by graphical and equation of state methods. Thermodynamics of ideal and non-ideal binary mixtures, Duhem - Margulus equation applications of ideal and non-ideal mixtures. Activity and activity coefficients-standard states.								- e 18		
2	Statistical thermodynam mathematical probabilities. Maxwell - Boltzmann, comparison and applicati translational, vibrational monoatomic ideal gases. properties: pressure, interna Helmholtz function, resi equipartition principle.	Assem Fermi ions. F and Statis 1 energ	Iblie Dir Partit rota stical y, er	s, en ac ion tiona ap ntrop	isem & l fun il p proa	bles, Bose ctior partit ich nthal	car -Ein ns - tion to py, (ionic stein ev fur The Gibb	al pa Sta aluati nction rmody 's fu	rticles tistics on o s for mamic nction	- f r 18 c
3	Irreversible Thermodynamic energy, entropy production flow, force and flux conce Onsager reciprocal relation effects-Applications of i systems.	in ope pts. On ships.]	n sy sage Elec	stem r the tro k	s by eory- cinet	hea valio ic ai	t, m dity nd tł	atter and nerm	and verifi omecl	curren cation hanica	t - 1 1

	Kinetics of Reactions: Theories of reactions, collision theory of	
	reaction rates, Effect of temperature on reaction rates, Unimolecular	
	reactions-Lindeman reactions, Transition state theoryapplications of	
4	ARRT to reactions between atoms and molecules - primary salt effect	18
	and secondary salt effect, homogeneous catalysis- acid- base catalysis-	
	mechanism of acid base catalyzed reactions- Bronsted catalysis law,	
	enzyme catalysis-Michelis-Menton catalysis.	
	Kinetics of complex and fast reactions: Kinetics of complex reactions,	
	reversible reactions, consecutive reactions, parallel reactions, chain	
	reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 - Br_2$	
5	reactions (Thermal and Photochemical reactions). Study of fast reactions-	18
	relaxation methods- temperature and pressure jump methods electric and	
	magnetic field jump methods - stopped flow flash photolysis methods	
	and pulse radiolysis.	
L	1	

CO	Course Outcomes
CO1	To explain the classical and statistical concepts of thermodynamics.
CO2	To compare and correlate the thermodynamic concepts to study the kinetics of chemical
	reactions.
CO3	To discuss the various thermodynamic and kinetic determination.
CO4	To evaluate the thermodynamic methods for real gases ad mixtures.
CO5	To compare and correlate the thermodynamic concepts to study the kinetics of chemical
	reactions.
Textboo	ks:
1.	J. Rajaram and J. C. Kuriacose, "Thermodynamics for Students of Chemistry", 2 nd
	ed., S.L.N.Chand and Co., Jalandhar, 1986.
2.	I. M. Klotz and R. M. Rosenberg, "Chemical thermodynamics", 6th ed., W.A.
	BenjaminPublishers, California, 1972.
3.	M. C. Gupta, "Statistical Thermodynamics", 1st ed., New Age International Pvt. Ltd., New
	Delhi, 1995.
4.	K. J. Laidler, "Chemical Kinetics", 3 rd ed., Pearson, Reprint - 2013.
5.	J. Rajaram and J. C. Kuriokose, "Kinetics and Mechanisms of chemical transformation",
	1 st ed., Macmillan India Ltd, Reprint - 2011.
Referen	ce Books:
1.	D. A. Mcqurrie And J. D. Simon, "Physical Chemistry - A Molecular Approach", 2 nd ed.,
	Viva Books Pvt. Ltd., New Delhi, 1999.
2.	R. P. Rastogi and R. R. Misra, "Classical Thermodynamics", 3rd ed., Vikas Publishing,
	Pvt. Ltd., New Delhi, 1990.
3.	S. H. Maron and J. B. Lando, "Fundamentals of Physical Chemistry", 5th ed., Macmillan
	Publishers, New York, 1974
4.	L. B. Ytsiimiriski, "Kinetic Methods of Analysis", 2 nd ed., Pergamom Press, 1996.
5.	Gurdeep Raj, "Phase rule", 1st ed., Goel Publishing House, 2011.
Web res	ources:
1.	https://nptel.ac.in/courses/104/103/104103112/
2.	https://nptel.ac.in/courses/112103016
3.	https://onlinecourses.nptel.ac.in/noc24_ch34/preview
4.	https://www.youtube.com/watch?v=zVEKh_mCGqw
5.	https://nptel.ac.in/courses/112103016

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	3	2	3
CO 3	3	3	2	3	3	3	3	2	3	2	3
CO 4	2	3	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	14	13	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	2.8	2.6	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

										Marks			
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total		
24PCHC23P	Inorganic Chemistry Practical	Core	0	0	4	0	3	4	25	75	100		
Learning Objectives											I		
LO1	To understand and enhance the visual observation as an analytical tool for the												
	quantitative estimation of ions	8.											
LO2	To recall the principle and theo	ory in pi	repar	ring	stan	dard	solı	ition	s.				
LO3	To train the students for improv	ving the	ir sk	ill in	esti	mati	ing t	he ar	nount o	f ion			
	accurately present in the solut	ion.											
LO4	To estimate metal ions, present	in the	give	n so	lutio	n ac	cura	tely	without	using			
	instruments.												
LO5	To determine the amount of ions, present in a binary mixture accurately.												
Unit			Hours										
	Analysis of Mixture of Cations: Analysis of a mixture of four												
	cations containing two commo	Cations											
	to be tested.		36										
	Group-I : W and Pb												
1, 2 & 3	Group-II : Mo, Cu, Bi and Co												
	Group-III : Ce, Zr, V, Cr, Fe and Ti												
	Group-IV : Zn, Ni, Co and Mr	1											
	Group-V : Ca, Ba and Sr												
	Group-VI : Li and Mg												
	Quantitative Analysis of the f	ollowin	g M	ixtu	res	(by							
	Volumetric/Gravimetric meth	nod)											
4 & 5	1. Estimation of Zinc and Mag	nesium	in a	mix	ture					24			
1 2 5	2. Estimation of Copper and Nickel in a mixture												
	3. Determination of Nickel in	the pres	sence	e of	Iron								
	4. Determination of Magnesiu	m in th	e pre	senc	e of	Iroi	1						

SCHEME OF VALUATION 24PCHC23P - INORGANIC CHEMISTRY PRACTICAL

Internal assessment	: 25 Marks
External assessment	: 75 Marks
Total	: 100 Marks
Max. Marks	: 75 Marks
Analysis of Mixture of Cations	: 40 Marks
Estimation	: 20 Marks
Record	: 10 Marks
Viva voce	: 5 Marks

CO	Course Outcomes
CO1	To identify the anions and cations present in a mixture of salts.
CO2	To apply the principles of semi micro qualitative analysis to categorize acid radicals and
	basic radicals.
CO3	To acquire the qualitative analytical skills by selecting suitable confirmatory tests and
	spot tests.
CO4	To choose the appropriate chemical reagents for the detection of anions and cations.
CO5	To synthesize coordination compounds in good quality.
Textb	ooks:
1	A. JeyaRajendran, "Microanalytical Techniques in Chemistry: Inorganic Qualitative
	Analysis", 1st ed., United Global Publishers, 2021.
2	V. V. Ramanujam, "Inorganic Semimicro Qualitative Analysis", 3rd ed., The National
	Publishing Company, Chennai, 1974.
3	G. Svehla, "Vogel's Text book of Inorganic Qualitative Analysis", 4th ed., ELBS, London.
4	G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, "Vogel's Textbook of Quantitative
	Inorganic Analysis", 6th ed., Wiley, 2002.
5	Gary D. Christian, "Analytical Chemistry: Principles and Techniques", 9th ed., Wiley,
	2021.
Refer	ence Books:
1	G. Pass, and H. Sutcliffe, " <i>Practical Inorganic Chemistry</i> ", 1 st ed., Chapman Hall, 1965.
2	W. G. Palmer, "Experimental Inorganic Chemistry", 1st ed., Cambridge University Press,
	1954.
3	A. I. Vogel, "Qualitative Inorganic Analysis", 3 rd ed., Longmans, 1961.
4	F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 6th ed., Wiley-
	Interscience, 1988.
5	Gary L. Miessler and Donald A. Tarr, "Inorganic Chemistry", 5th ed., Pearson Prentice
	Hall, 2010.
Web	resources:
1	https://www.masterorganicchemistry.com/
2	https://nptel.ac.in/
3	https://ocw.mit.edu/
4	https://www.google.com/url?sa=E&source=gmail&q=https://www.jstor.org/
5	https://www.google.com/url?sa=E&source=gmail&q=https://www.sciencedirect.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	3	3	2
CO 3	3	3	2	2	3	3	3	2	2	3	3
CO 4	3	3	3	2	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	2	2	3	3
Total	14	15	13	13	14	12	15	13	13	15	14
Average	2.8	3.0	2.6	2.6	2.8	2.4	3.0	2.6	2.6	3.0	2.8

Mapping with Programme Outcomes and Programme Specific Outcomes

3 - Strong, 2 - Medium, 1 - Low

									Marks			
Course Code	Course Name	Category	L	Т	Р	s	Credits	Hours	CIA	External	Total	
24PCHC24	Bio-Inorganic Chemistry	Core	2	1	1	0	3	4	25	75	100	
Learning Objectives												
LO1												
LO2	To understand the structur transport proteins.	re, funct	tion,	and	pro	perti	es of	f oxy	/gen c	carriers	s and other	
LO3	To study the process of nit	rogen fi	xati	on ar	nd pł	notos	synth	esis.				
LO4	To assess the toxicity and t											
LO5	To apply the properties, kin				rs af	fecti	ng ei	nzym	ne acti	vity.		
Unit			onte	-							Hours	
1	Essential Trace Elements: Selective transport and storage of metal ions: Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signaling proteins. Metalloenzymes: Zinc enzymes–carboxypeptidase and carbonic anhydrase. Iron enzymes–catalase, peroxidase. Copper enzymes – superoxide dismutase, Plastocyanin, Ceruloplasmin, Tyrosinase. Coenzymes - Vitamin-B ₁₂ coenzymes.										1 , 12	
2	Transport Proteins: Oxygen carriers -Hemoglobin and myoglobin - Structure and oxygenation Bohr Effect. Binding of CO, NO, CN- to Myoglobin and Hemoglobin. Biological redox system: Cytochromes- Classification, Cytochrome P-450. Non-heme oxygen carriers- Hemerythrin and hemocyanin. Iron-sulphur proteins- Rubredoxin and Ferredoxin- Structure and classification.										12	
3	NitrogenFixation:Introduction,typesofnitrogenfixingmicroorganisms.Nitrogenaseenzyme-Metalclustersinnitrogenaseredoxproperty-Dinitrogencomplexes-transitionmetalcomplexesofdinitrogen-nitrogenfixationvianitrideformationandreductionofdinitrogentoammonia.Photosynthesis:photosystem-Iandphotosystem-IandphotosystemII-chlorophyllsstructureandfunction.function.										f f 12	
4	Metals in Medicine: Metal Toxicity of Hg, Cd, Zn, Pb, As, Sb. Therapeutic compounds: Vanadium-based diabetes drugs; Platinum- Containing anticancer agents. Chelation therapy: Cancer treatment. Diagnostic agents: Technetium imaging agents, Gadolinium MRI imaging agents. Temperature and critical magnetic field.										12	
5	Enzymes: Introduction and Enzyme kinetics, free ener Michelis - Menton equati reactions. Factors contribut	rgy of a on - E	activ ffect	atior t of	n and pH,	the tem	e effe pera	ects o ture	of cat	alysis.	12	

СО	Course Outcomes
CO1	To explain the role of essential trace elements in biological systems, including their
	transport, storage, and function in metalloenzymes.
CO2	To describe the structure, function, and properties of oxygen carriers and other
CO3	transport proteins involved in redox reactions. To understand the process of nitrogen fixation and photosynthesis, including the role
	of nitrogenase enzymes and photosystems.
CO4	To evaluate the toxicity and therapeutic applications of metals in medicine, such as
~ ~ ~	chelation therapy and diagnostic agents.
CO5	To explain the properties, kinetics, and factors affecting enzyme activity, as well as the Michaelis-Menten equation.
Textbooks	
1	I. Bertini, A. Sigel, and H. Sigel, "Metal Ions in Biological Systems: Volume 42:
	Transport and Storage of Metal Ions: Ferritins, Transferrins, and Siderophores", 1^{st}
	ed., Springer, 2004.
2	R. E. Dickerson and I. Geis, "Emoglobin: Structure, Function, and Evolution, 1st ed.,
	Benjamin/Cummings Publishing Company, 1983.
3	B. K. Burgess and D. J. Lowe, "Nitrogenase: A Molybdenum-Iron Enzyme", 1st ed.,
	Wiley-VCH, 1996.
4	C. F. Meares, "Metal Ions in Biological Systems: Volume 28: Chemistry and
	Biological Applications of Vanadium", 1st ed., Springer, 1990.
5	A. Fersht, "Structure and Mechanism in Protein Science: A Guide to Enzyme
	Catalysis and Protein Engineering", 3rd ed., W. H. Freeman, 2003.
Reference	Books:
1	J. J. R. Fraústo da Silva and R. J. P. Williams, "The Biological Chemistry of
	Elements: The Inorganic Chemistry of Life", 2 nd ed., Oxford University Press, 2009.
2	L. Stryer, "Biochemistry", 5 th ed., W. H. Freeman, 2002.
3	R. H. Burris, "Nitrogen Fixation: Principles and Practice", 1st ed., Chapman & Hall,
	1990.
4	E. A. Liberles, "Medicinal Inorganic Chemistry: A Bioinorganic Approach", 2 nd ed.,
	John Wiley & Sons, 2009.
5	D. E. Koshland Jr., "Enzyme Catalysis", 1st ed., W. H. Freeman, 1970.
Web resou	rces:
1	https://www.google.com/url?sa=E&source=gmail&q=https://pubchem.ncbi.nlm.nih.gov/
2	https://www.google.com/url?sa=E&source=gmail&q=https://www.rcsb.org/
3	https://www.britannica.com/summary/nitrogen-fixation
4	https://www.google.com/url?sa=E&source=gmail&q=https://www.ncbi.nlm.nih.gov/pmc/
	articles/PMC3584006/
5	https://www.google.com/url?sa=E&source=gmail&q=https://www.enzyme.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	2	3	3
CO 2	2	3	3	3	3	2	3	3	3	2	3
CO 3	3	3	2	3	3	3	3	2	3	2	3
CO 4	2	3	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	13	13	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	2.6	2.6	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

		×							Mar	ks		
Course Code	Course name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PCHE21	Medicinal Chemistry	Elective 3	2	1	1	0	3	4	25	75	100	
Learning ol	ojectives									<u>I </u>		
LO1	To study the chem	istry behin	d the	devel	opm	ent c	of pha	rmaceuti	cal ma	ateria	s.	
LO2	To gain knowledge	on mechan	ism aı	nd acti	on o	f dru	gs.					
LO3	To understand the n	eed of antil	oiotics	and u	Isage	of d	rugs.					
LO4	To apply knowledge	e of CNS p	harma	colog	y to 1	the tr	reatme	nt of var	ious di	isorde	ers.	
LO5	To identify and app	ly the actio	n of v	arious	antil	biotic	cs.					
Unit			0	Conter	ıt						Hours	
1	Introduction to receptors: Introduction, targets, Agonist, antagonist, partial agonist. Receptors, Receptor types, Theories of Drug receptor interaction, Drug synergism, Drug resistance, physicochemical factors influencing drug action.									g 12		
2	Antibiotics: Introduction, Targets of antibiotics action, classification of antibiotics, enzyme-based mechanism of action, SAR of penicillins and tetracyclins, clinical application of penicillins, cephalosporin. Current trends in antibiotic therapy.									12		
3	Antihypertensive agents, introductio antihypertensive ag Furosemide, Hydrod	agents an n to hyp ents, classi	ertens ficatio	ion, on and	etiol mea	ogy,	types	s, classi	ficatio	on of	12	
4	Central Nervous System (CNS) Drugs: Introduction to the CNS, CNS Disorders - Anxiety, depression, schizophrenia, Parkinson's disease, Alzheimer's disease, epilepsy. Classes of CNS Drugs - Antidepressants, Antipsychotics, Anxiolytics, Anticonvulsants, Analgesics, Stimulants. Mechanisms of action, Drug metabolism and Pharmacokinetics, Therapeutic										12	
5	Analgesics, Antipyretics and Anti-inflammatory Drugs: Introduction, mechanism of inflammation, classification and mechanism of action - Paracetamol, Ibuprofen, Diclofenac, Naproxen, Indomethacin, Phenylbutazone and Meperidine. Medicinal chemistry of antidiabetic agents - Introduction, types of diabetics, drugs used for the treatment, chemical classification, mechanism of action, treatment of diabetic mellitus. Chemistry of insulin and sulfonyl urea.12											

СО	Course Outcomes
CO1	To predict a drugs properties based on its structure.
CO2	To describe the factors that affect its absorption, distribution, metabolism, and excretion,
	and hence the considerations to be made in drug design.
CO3	To explain the relationship between drug's chemical structure and its therapeutic properties.
CO4	To critically evaluate the mechanisms of action, therapeutic applications, and potential
	adverse effects of various CNS drugs.
CO5	To identify different targets for the development of new drugs for the treatment of
	infectious and GIT.
Textb	ooks:
1	Jayashree Ghosh, "A text book of Pharmaceutical Chemistry", 1 st ed., S. Chand and Co.
	Ltd, 1999.
2	Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William,
	"Wilson's Comprehensive Textbook of Ophthalmology", 12th ed., Lippincott Williams &
	Wilkins, 2011.
3	Graham L. Patrick, "An Introduction to Medicinal Chemistry", 5th ed., Oxford University
	Press, 2013.
4	O. LeRoy, "Natural and synthetic organic medicinal compounds", 1st ed., Ealemi, 1976.
5	S. Ashutosh Kar, "Medicinal Chemistry", 1st ed., Wiley Eastern Ltd, New Delhi, 1993.
Refer	ence Books:
1	Lipincott Williams, "Foye's Principles of Medicinal Chemistry", 7th ed., 2012.
2	Donald J. Abraham, David P. Rotella, Alfred Burger, "Burger's Medicinal Chemistry,
	Drug Discovery and Development", 6th ed., Academic press, 2010.
3	John M. Beale Jr and John M. Block, "Wilson and Gisvold's Textbook of Organic
	Medicinal and Pharmaceutical Chemistry", 12th ed., Wolters Kluwer, 2011.
4	P. Parimoo, "A Textbook of Medical Chemistry", 1st ed., CBS Publishers, New Delhi,
	1995.
5	S. Ramakrishnan, K. G. Prasannan and R. Rajan, "Textbook of Medical
	Biochemistry", 3 rd ed., Orient Longman. Hyderabad, 1993.
Web	resources:
1	https://www.ncbi.nlm.nih.gov/books/NBK482447/
2	https://reference.medscape.com/drugs/antimicrobials
3	https://www.classcentral.com/course/swayam-medicinal-chemistry-
4	https://www.webmd.com/drugs/2/drug-15964-3/analgesic-oral/aspirin-oral/details
5	https://hopkinsdiabetesinfo.org/type-2-meds/
1	

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	2	3	3	2	3	3	3	3	3	3
CO 2	3	3	3	3	3	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	2	2	3	3	3
CO 4	3	2	3	3	2	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	2	3	3	3
Total	15	12	13	15	13	12	13	13	13	12	13
Average	3.0	2.4	2.6	3.0	2.6	2.4	2.6	2.6	2.6	2.4	2.6

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

			Ma	rks								
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PCHE22	Green Chemistry	Elective 4	2	1	1	0	3	4	25	75	100	
	Learning objectives											
LO1	To discuss the principles of green chemistry.											
LO2	To propose green solutions for chemical energy storage and conversion.											
LO3	To understand soil properties and microbial roles in soil processes.											
LO4	Propose solutions for pollution prevention in Industrial chemical and fuel pr											
	Automotive industry and Shipping industries.											
LO5	Propose green solutions for industrial production of Surfactants, Organi											
	Inorganic chemicals.											
Unit			Co	ontent	;						Hours	
1	Introduction to Green Chemistry: Introduction - Need, Goals and Limitations Green Chemistry - Chemical accidents, terminologies, International green chemistry organizations - Twelve principles of Green Chemistry with examples.										12	
2	Green Synthesis a catalysts and solve green synthesis - 0 methods of prepara dioxide - Green syn	nts - Green Green reag tion, effect	n ch ents	emist - Gr	ry in een so	ever olver	yday nts -	life - I Criteria	Design 1, gen	ing eral	12	
3	Soil Chemistry: So soil temperature, s formation - Types ureases - Role of o matter decomposition	oil mineral of soil e enzymes in	s, b nzyr	ufferin nes -	ng of Deh	soil ydro	, soil genas	fertilit es, pho	y and osphat	soil ases,	12	
4	Phase Transfer Catalysis and Green Synthesis: Phase transfer catalysis in green synthesis - Oxidation using hydrogen peroxide, crown ethers, esterification, saponification, anhydride formation, elimination reaction and displacement reaction.											
5	Green Synthesis green synthesis Sonochemistry – microwave and son benefits of green sy	• Principle Instrumenta lochemical	, In ation	nstrun 1 - C	nentat Cavitat	ion tion	and theor	applic y - C	ations Combin	- ned	12	

CO	Course Outcomes
CO1	To recall the basic chemical techniques used in conventional industrial preparations and in
	green innovations.
CO2	To understand the various techniques used in chemical industries and in laboratory.
CO3	To gain knowledge of soil chemistry for agricultural and environmental management.
CO4	To apply the principles of PTC, microwave and ultrasonic assisted organic synthesis.
CO5	To design and synthesize new organic compounds by green methods.
Textbo	oks:
1	V. K. Ahluwalia and M. R. Kidwai, "New Trends in Green Chemistry", 1st ed.,
	Anamalaya Publishers, 2005.
2	W. L. McCabe, J. C. Smith and P. Harriott, "Unit Operations of Chemical
	Engineering", 7th ed., McGraw-Hill, New Delhi, 2005.
3	J. M. Swan and D. St. C. Black, "Organometallics in Organic Synthesis", 1st ed.,
	Chapman Hall, 1974.
4	V. K. Ahluwalia and R. Aggarwal, "Organic Synthesis: Special Techniques", 1st ed.,
	Narosa Publishing House, New Delhi, 2001.
5	A. K. De, "Environmental Chemistry", 1 st ed., New Age Publications, 2017.
Refere	nce Books:
1	P. T. Anastas and J. K. Warner, "Oxford Green Chemistry -Theory and Practical", 1st
	ed., University Press, 1998.
2	A. S. Matlack, "Introduction to Green Chemistry", 1 st ed., Marcel Dekker, 2001.
3	M. C. Compand M. E. Company, "Dard Wards Correct in Course Chamistan" 1st ad
	M. C. Cann and M. E. Connely, "Real-World Cases in Green Chemistry", 1st ed.,
	American Chemical Society, Washington, 2000.
4	
4	American Chemical Society, Washington, 2000.
4	American Chemical Society, Washington, 2000.M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1st ed.,
	American Chemical Society, Washington, 2000.M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1st ed.,American Chemical Society Washington, 2002.
5	American Chemical Society, Washington, 2000.M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1st ed., American Chemical Society Washington, 2002.Chandrakanta Bandyopadhyay, "An Insight into Green Chemistry", 1st ed., Books and
5	 American Chemical Society, Washington, 2000. M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1st ed., American Chemical Society Washington, 2002. Chandrakanta Bandyopadhyay, "An Insight into Green Chemistry", 1st ed., Books and Allied (P) Ltd, 2019.
5 Web re	American Chemical Society, Washington, 2000. M. A. Ryan and M. Tinnesand, " <i>Introduction to Green Chemistry</i> ", 1 st ed., American Chemical Society Washington, 2002. Chandrakanta Bandyopadhyay, " <i>An Insight into Green Chemistry</i> ", 1 st ed., Books and Allied (P) Ltd, 2019. esources:
5 Web ro 1	American Chemical Society, Washington, 2000. M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1 st ed., American Chemical Society Washington, 2002. Chandrakanta Bandyopadhyay, "An Insight into Green Chemistry", 1 st ed., Books and Allied (P) Ltd, 2019. esources: https://www.acs.org/greenchemistry.html
5 Web ro 1 2	American Chemical Society, Washington, 2000. M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1 st ed., American Chemical Society Washington, 2002. Chandrakanta Bandyopadhyay, "An Insight into Green Chemistry", 1 st ed., Books and Allied (P) Ltd, 2019. esources: https://www.acs.org/greenchemistry.html https://www.rsc.org/journals-books-databases/about-journals/green-chemistry/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	2	2	3	3	3	3	3	3
CO 2	2	3	3	3	2	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	3	3	3	3	2
CO 4	2	3	2	3	2	2	2	3	3	3	3
CO 5	2	2	2	3	3	2	3	3	3	3	3
Total	12	13	12	14	12	12	13	15	15	15	14
Average	2.4	2.6	2.4	3.0	2.4	2.4	2.6	3.0	3.0	3.0	2.8

Mapping with Programme Outcomes and Programme Specific Outcomes

3 - Strong, 2 - Medium, 1 - Low

		~								Ma	rks	
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PCHE23	Industrial Chemistry	Elective 5 2 1 1 0 3 4 25 75								75	100	
		Learning	Obj	ectiv	ves							
LO1	To recall basic statistical concepts, control chart types, and quality as principles.											
LO2	To explain the concept of relative volatility in distillation.											
LO3	To calculate the material balance for a filtration process.											
LO4	To break down the steps involved in extracting a metal from its ore.											
LO5	To judge the effectiveness of different personal protective equipment.											
Unit	Content											
1	Statistical Quality Control Techniques : Statistical treatment of data - Control charts. Quality Assurance: Elements of quality Assurance, Quality Management System: ISO 9001:2000 QMS and ISO 14000 Series of Standards. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Good Laboratory Practices: Principles of GLP, GMP in Chemical and Pharmaceutical Industries.											
2	Distillation Unit Process : Types of distillation processes, concept of batch and continuous distillation, simple steam distillation - advantages, disadvantages and application. Evaporation and Drying - factors affecting the rate of evaporation and choice of evaporators, application of evaporation, equipment- climbing film evaporator, drying process, free moisture, bound moisture and equilibrium moisture content, purpose of										12	
3												

methods, gravity separation, magnetic concentration, froth flo	ration
memous, gravity separation, magnetic concentration, nour ne	tation
process, chemical methods - calcination and roasting, reduction	using
4 carbon and carbon monoxide, Alumino thermite reduction,	auto 12
reduction, refining methods - polling, parting and electrolyte re-	ining.
Metallurgical Extraction - Lead from galena, Aluminum from b	auxite
and Zinc from Zinc blende.	
Industrial Hygiene & Safety: Personal protective equip	nents.
Industrial hazards and Safety: Process hazards checklists, I	azard
surveys, safety program, Hazop safety reviews. Industrial pol	ution:
5 Classification of hazardous chemicals, storage, transportation, har	dling, 12
risk assessments, challenges/solutions. Eco-friendly effluents dis	posal:
advanced waste water treatment, effluent quality standards and	laws.
Sensors: Concept of molecular sensors its properties and application	ns.

CO	Course Outcomes
CO1	Able to use statistical tools to analyze process data and identify quality issues.
CO2	To design and optimize distillation processes for various applications.
CO3	To select appropriate purification and filtration techniques for different materials.
CO4	To evaluate the feasibility of extracting metals from different ores.
CO5	To implement effective industrial hygiene and safety practices.
Textboo	ks:
1	Douglas C. Montgomery, "Statistical Quality Control: A Modern Introduction, 9th ed.,
	John Wiley & Sons, 2018.
2	J. D. Perry, "Distillation: Principles and Applications", 5th ed., McGraw-Hill Education,
	2015.
3	Warren L. McCabe, Julian C. Smith, and Peter Harriott, "Unit Operations of Chemical
	Engineering", 8th ed., McGraw-Hill Education, 2016.
4	J. C. Agarwal, "The Extractive Metallurgy of Copper", 3rd ed., Elsevier, 2013.
5	Kenneth R. Holness and David H. Slone, "Industrial Hygiene: Principles and
	Practices ", 3 rd ed., John Wiley & Sons, 2015.
Referen	ce Books:
1	George E. P. Box, William G. Hunter, and J. Stuart Hunter, "Statistical Methods for
	Engineers and Scientists", 3rd ed., John Wiley & Sons, 2005.
2	J. M. Coulson and J.F. Richardson, "Separation Processes in Chemical Engineering", 3rd
	ed., Pergamon Press, 1991.
3	Robert H. Perry, Don W. Green, and James O. Maloney, "Perry's Chemical Engineers'
	Handbook", 9th ed., McGraw-Hill Education, 2019.
4	A. K. Biswas and W.G. Davenport, "Extractive Metallurgy: Principles and Practice", 4th
	ed., Elsevier, 2013.
5	Clayton W. Hoyle, Jr., and Kenneth R. Holness, "Industrial Hygiene: A Comprehensive
	<i>Textbook</i> ", 4 th ed., John Wiley & Sons, 2013.
Web res	ources:
1	https://www.projectmanager.com/blog/quality-assurance-and-testing
2	https://www.britannica.com/summary/distillation
3	https://www.britannica.com/dictionary/filtration
4	https://en.wikipedia.org/wiki/Metallurgy
5	https://www.osha.gov/

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	2	3	3	2	3	2	3	3	3	2
CO 2	3	3	3	2	3	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	2	2	3	2	3	3
CO 5	3	3	2	3	3	2	2	3	3	3	3
Total	15	13	13	14	14	12	11	15	14	15	14
Average	3.0	2.6	2.6	2.8	2.8	2.4	2.2	3.0	3.0	3.0	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

		~								Ma	rks	
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PCHE24	Materials Science	Elective 6 2 1 1 0 3 4 25 75 Learning Objectives										
		Learning	Obj	ectiv	ves							
LO1	To understand the crystal structure, growth methods and X-ray scattering.											
LO2	To explain the optical, dielectric and diffusion properties of crystals.											
LO3	To recognize the basis of semiconductors, superconductivity mater magnets.											
LO4	To study the synthesis, classification and applications of nanomaterials.											
LO5	To learn about the importance of materials used for renewable energy conv											
Unit	Content											
2	systems - Bravais la diffraction-Laue equ application to geomet single crystal applic diffraction-method an Crystal Growth M metastable state. Sin growth– Gel and equilibrium stability Stockbarger, Czochr chemical vapour trans secondary extinctions	Crystallography: Symmetry - unit cell and Miller indices - crystal systems - Bravais lattices - point groups and space groups - Xray diffraction-Laue equations-Bragg's law-reciprocal lattice and its application to geometrical crystallography. Crystal structure–powder and single crystal applications. Electron charge density maps, neutron diffraction-method and applications. Crystal Growth Methods: Nucleation–equilibrium stability and metastable state. Single crystal –Low and high temperature, solution growth– Gel and sol-gel. Crystal growth methods- nucleation– equilibrium stability and metastable state. Melt growth - Bridgeman- Stockbarger, Czochralski methods. Flux technique, physical and chemical vapour transport. Lorentz and polarization factor - primary and										
3	(qualitative) refractive and opacity. Types of luminescence, LEDs Applications. Dielect orientation, and spat dielectric constant,	chemical vapour transport. Lorentz and polarization factor - primary and secondary extinctions. Properties of Crystals: Optical studies - Electromagnetic spectrum (qualitative) refractive index – reflectance – transparency, translucency and opacity. Types of luminescence – photo-, electro-, and injection luminescence, LEDs – organic, Inorganic and polymer LED materials - Applications. Dielectric studies- Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature, dielectric constant, dielectric loss. Types of dielectric breakdown– intrinsic, thermal, discharge, electrochemical and defect breakdown.										

temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain	
BCS theory-Cooper pair Applications Soft and hard magnets - Domain	
bes mosty-cooper pair, Appreations. Soft and magnets – Domain	
theory Hysteresis Loop-Applications. Magneto and giant	
4 magnetoresistance. Ferro, ferri and antiferromagnetic materials	12
applications, magnetic parameters for recording applications. Ferro-,	
Piezo-, and pyro electric materials – properties and applications. Shape	
memory Alloys-characteristics and applications, Non-linear optics	
Second Harmonic Generators.	
Materials for Renewable Energy Conversion: Solar Cells: Organic,	
bilayer, bulk heterojunction, polymer, perovskite based. Solar energy	
conversion: lamellar solids and thin films, dye-sensitized photo voltaic	
cells, coordination compounds anchored onto semiconductor surfaces -	12
Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and	12
splitting of water, CO2 and N2. Manganese based photo systems for	
water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical	
generation of hydrogen from alcohol.	

СО	Course Outcomes
CO1	To understand and recall the synthesis and characteristics of crystal structures,
	semiconductors, magnets, nanomaterials and renewable energy materials.
CO2	To integrate and assess the structure of different materials and their properties.
CO3	To analyse and identify new materials for energy applications.
CO4	To explain the importance of crystal structures, piezoelectric and pyroelectric materials,
	nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED
CO5	uses, structures and synthesis.
	To design and develop new materials with improved property for energy applications.
Textbook	
1	S. Mohan and V. Arjunan, " <i>Principles of Materials Science</i> ", 2 nd ed., MJP Publishers, 2016.
2	Arumugam, "Materials Science", 2 nd ed., Anuradha Publications, 2007.
3	Giacavazzo et. al., "Fundamentals of Crystallography", 2 nd ed., International Union of
	Crystallography, Oxford Science Publications, 2010.
4	Woolfson, "An Introduction to Crystallography", 3rd ed., Cambridge University Press,
	2012.
5	James F. Shackelford and Madanapalli K. Muralidhara, "Introduction to Materials
	Science for Engineers", 6th ed., Pearson Press, 2007.
Reference	e Books:
1	M. G. Arora, "Solid State Chemistry", 2 nd ., Anmol Publications, New Delhi, 2001.
2	Q. K. Puri and V. K. Babbar, "Solid State Physics", 5th ed., S Chand and Company Ltd,
	2001.
3	C. Kittel, "Solid State Physics", 5th ed., John-Wiley and Sons, NY, 1966.
4	E. P. Meyers, "Introductory Solid State Physics", 1st ed., Viva Books Private Ltd.,
	1998.
5	A. R. West, "Solid State Chemistry and Applications", 2 nd ed., John-Wiley and Sons,
	1987.
Web reso	purces:
1	https://en.wikipedia.org/wiki/Crystal_structure
2	https://en.wikipedia.org/wiki/Czochralski_method
3	https://en.wikipedia.org/wiki/Dielectric
4	https://en.wikipedia.org/wiki/Superconductivity
5	https://en.wikipedia.org/wiki/Solar_cell

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	2	2	3	3	2	2	3	2
CO 2	2	2	3	3	3	3	3	3	3	3	3
CO 3	3	3	2	2	3	3	3	2	3	3	3
CO 4	3	3	3	2	3	3	2	3	3	3	2
CO 5	2	2	2	3	3	3	3	3	3	3	3
Total	13	13	13	12	14	15	14	13	14	15	13
Average	2.6	2.6	2.6	2.4	2.8	3.0	2.8	2.6	2.4	3.0	2.6

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

						Marl		arks			
Course Code	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PCHS21	Cosmetic Chemistry	SEC-1 (NME)	1	0	1	0	2	2	25	75	100
]	Learning	Ob	jecti	ves						
LO1	To understand formulations of various types of cosmetics.										
LO2	To understand the makeup preparations and personal grooming.										
LO3	To knowledge about regul	atory bod	lies	and 1	rules	gov	verni	ng p	ersona	al care	products.
LO4	To understand the imporindustries.	rtance an	d h	ealth	bei	nefit	s of	ess ess	ential	oils	in cosmetic
LO5	To understand beauty trea	tments.									
Unit		Co	nten	t							Hours
1	Skin Care: Nutrition of t powder – ingredients; cr purpose, shaving and sur and advantages. Lab Practice: Prepare a ha	eams and nscreen (1	l lot form	ions	- c	lean	sing	, mo	oisturi	zing a	ı11
2	Hair Care and Dental Care: Shampoos – types – powder, cream, liquid, gel – ingredients; conditioner – types – ingredients. Toothpastes – ingredients – mouthwash. Lab Practice: Formulate a basic Shampoos, prepare a basic toothpaste and mouthwash.						6				
3	Make Up: Base – foundation – types – ingredients; lipstick, eyeliner, mascara, eye shadow, concealers, rouge. Lab Practice: Synthesize a basic lip balm.						, 6				
4	Perfumes: Classification of perfumes - Natural – plant origin – parts of the plant used, chief constituents; synthetic – classification emphasizing characteristics – esters – alcohols – aldehydes – ketones. 6 Lab Practice: Prepare a customized perfume of body spray. 6						3				
5	Beauty Treatments: Facials - types - advantages - disadvantages; facemasks - types; bleach - types - advantages - disadvantages; shaping the eyebrows; hair coloring and dyeing; pedicure, manicure - advantages - disadvantages. Lab Practice: Prepare a clay-based face mask.						ng				

CO	Course Outcomes
CO1	Know about the composition of various cosmetic products.
CO2	Understand chemical aspects and applications of hair care and dental care and
	skincare products.
CO3	Understand chemical aspects and applications of perfumes and skincare products.
CO4	To understand the methods of beauty treatments their advantages and disadvantage.
CO5	Understand the hazards of cosmetic products.
Textbo	ooks:
1	Thankamma Jacob, "Foods, Drugs and Cosmetics – A consumer guide", Macmillan Publication, London, 1997.
2	Zoe Diana Draelos (Editor) and Lauren Thaman (Editor), "Cosmetic Formulation of Skin Care Products", CRC Press, 2 nd ed., 2006.
3	Meyer R and Rosen (Editor), "Harry's Cosmeticology", Chemical Publishing Company, 9th ed., 2019.
4	André O, Barel (Editor), Marc Paye (Editor), Howard I and Maibach (Editor),
	"Handbook of Cosmetic Science and Technology", CRC Press, 3rd ed., 2014.
5	Maison G and deNavarre, "The Chemistry and Manufacture of Cosmetics", Van
	Nostrand Reinhold, 2 nd ed., 2009.
Refere	nce Books:
1	Wilkinson J. B. E. and Moore R. J, "Harry's Cosmeticology", 7th ed., Chemical Publishers, London, 1997.
2	George Howard, "Principles and Practice of Perfumes and Cosmetics", 1987.
3	Milady, "Milady Standard Cosmetology", Cengage Learning Publishers, 13th ed., 2016.
4	Hiroshi Iwata, "Formulas, Ingredients and Production of Cosmetics: Technology of Skin- and Hair-Care Products in Japan", Springer, 1 st ed., 2016.
5	Zoe Diana Draelos, " <i>Cosmetic Dermatology: Products and Procedures</i> ", Wiley-Blackwell Co., 2 nd ed., 2016.
Web r	esources:
1	https://www.paulaschoice.com/ingredient-dictionary
2	https://www.thespruce.com/about-us-4776800
3	https://www.makeupalley.com/categories/foundation-makeup
4	https://perfumesociety.org/
5	https://www.aad.org/public/everyday-care

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	3	3	2	2	3	3
CO 2	2	3	3	3	2	3	3	2	2	3	3
CO 3	3	3	3	2	3	3	3	2	3	2	3
CO 4	3	3	3	3	3	3	3	2	3	3	3
CO 5	3	2	3	3	3	3	3	2	3	2	3
Total	14	14	15	14	14	15	15	10	13	13	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	2.6	2.6	3.0

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2 – Medium, 1 - Low

Continuous Internal Assessment (CIA) Test

The following procedure will be followed for the award of internal marks:

CIA Exam I: Three hours duration for 75 marks (First 2 ½ Units) CIA Exam II cum Model Exam: Three hours duration for 75 marks (Full Syllabus)

Internal Mark Distribution	Theory & Practical
CIA – I (75 Marks)	5
CIA – II (75 Marks)	5
Library Usage in Hours	5
Attendance	5
Assignment / Seminar / Observation	5
Internal Marks	25

Format to Entering in all Continue Internal Assessment (CIA) Tests and Internal Marks

Reg No.	Name	CIA - 1	CIA - 2	Marks Conve rsion	Library Usages	Atten dance	Assignment / Seminar / Observation	Total Marks	Remarks

Recommendations for Entering Library Usage:

Library usage for UG in hours	Marks to be awarded
Minimum 10 Hours	5

Attendance:

Attendance Earned	Category	Marks to be Awarded
91% and above	Highly Regular	5
75% but below 90%	Regular	4
65% but below 74%	Shortage	3
55% but below 64%	Detained	2
Below 54%	Redo	0

THEORY QUESTION PAPER PATTERN END SEMESTER EXAMINATIONS FOR UG & PG DEGREE PROGRAMMES - 3 HOURS DURATION

Part A	To answer All the 10 Short Questions (Two Questions from each UNIT)	10 X 2 = 20 Marks			
Part B	To answer All the 5 questions (either or, type) (One Question from each UNIT)	5 X 5 = 25 Marks			
Part CTo answer 3 questions (out of 5 questions) (One question from each UNIT)		3 X 10 = 30 Marks			
TOTAL 75 Marks					
(Equal Weightage should be given to each unit)					