

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG & Research Department of Physics

for

Postgraduate Programme Master of Physics

From the Academic Year 2024-25

CONTENT

1. Preamble

- 2. Programme Outcomes
- 3. Programme Specific Outcomes
- 4. Eligibility for Admission
- **5.** Methods of Evaluation and Assessments
- 6. Skeleton & Syllabus

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION

1. Preamble

Physics is the most of basic of sciences. It seeks to understand natural phenomena in a quantitative manner, and to answer some of the oldest and deepest questions ever asked by human beings: What are things made of? Is there a limit to the smallest things that we can think of? Did the world have a beginning? Will it have an end? At the same time, it provides the base of much of the technology that we take for granted in the 21 st century: computers, artificial satellites, mobile phones, TV, microwave oven. Indeed, it will not be an exaggeration to say that modern human life is shaped by technologies that are largely based on a foundation of physics. Physics as a discipline has existed for three hundred years and has a large 'core' body of knowledge. Our M.Sc. programme lays emphasis on the courses that constitute this core component, while providing students with a bouquet of optional papers covering almost all branches of physics. Those who wish to pursue higher studies in the subject are thereby well equipped to choose their branch of study. The programme also aims at equipping future teachers (at college as well school level) with a thorough grounding in the subject. Since physics is the base of much of modern technology, the programme also gives adequate hands-on experience to students who may go on to work in applied fields. Finally, viewing physics as a training ground for the mind the programme also aims to equip those who go into other fields of work with logical thinking and a critical attitude.

PROGRAMME OUTCOMES (PO)

Programme	M.Sc., Physics
Programme Code	PS11
Duration	2 Years[PG]
Programme Outcomes	 PO1: Acquire knowledge in Physics to apply the knowledge in their day-to-day life for betterment of self and society. PO2: Develop critical, analytical thinking and problem-solving skills PO3: Develop research related skills in defining the problem, formulate and test the hypothesis, analyse, interpret, and draw conclusion from data. PO4: Address and develop solutions for societal and environmental needs of local regional and national development. PO5: Work independently and engage in lifelong learning and enduring proficient progress. PO6: Provoke employability and entrepreneurship among students along with ethics andcommunication skills. PO7: Understand the importance of ethical behavior in business contexts and be able to recognize and address ethical dilemmas they may encounter in their professional careers. PO8: Prepared for lifelong learning and professional development, including the ability to adapt to changes in technology, business practices, and economic conditions throughout their careers.
Programme Specific Outcomes:	 PSO1: Placement: Acquire the ability to critically analyze complex real life problems using the laws of Physics with appropriate mathematical tools and thereby preparing the students to face various state/national level competitive exams. PSO2: Entrepreneur: Acquire employability and entrepreneurial skills through hands-on training in basic as well as advanced areas of Physics and to develop innovative scientific solutions for industrial and societal needs at local, regional, national and global levels. PSO3: Contribution to the Society: Create skills required for identifying socially relevant research problems, collection of data, analyze and interpret data leading to knowledge enhancement in addressing the societal challenges.

Eligibility for Admission:

Candidates for admission to the first year of the **Master of Physics** course shall be required to have passed the **Bachelor of Physics** by the Government of TamilNadu or any equivalent.

Methods	of Eva	luation	and	Assessment
---------	--------	---------	-----	------------

Methods of Evaluation								
Internal Evaluation 25 Marks								
External	End Semester Examination	75 Marks						
	Total	100 Marks						
	Methods of Assessment							
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions							
Understand / MCQ, True/False, Short essays, Concept explanations, short summary								
Comprehend (K2)	overview							
Application (K3)	Suggest idea/concept with examples, suggest formulae, solve problems, Observe, Explain							
Analyze (KA)	Problem-solving questions, finish a procedure in many steps, Differentiate							
Allaryze (K4)	Between various ideas, Map knowledge							
Evaluate (K5)	Longer essay/Evaluation essay, Critique or justify with	pros and cons						
Create (K6)	Check knowledge in specific or offbeat situations, Disc	ussion, Debating or						
	Presentations							

	Semester - I						Semester - II						
Code	Course Title	Hours Distributio			on C		Code	Course Title	Ι	Ho Distr	ion	с	
		L	Т	Р	S				L	Т	Р	S	
24PPHC11	CC - Mathematical Physics	4	1	0	0	4	24PPHC21	CC-Statistical Mechanics	5	0	0	0	4
24PPHC12	CC - Classical Mechanics and Relativity	4	1	0	0	4	24PPHC23	CC - Quantum Mechanics – I	5	0	0	0	4
24PPHP13P	CC – Practical I – Electronics	0	0	5	0	3	24PPHC24	CC - Electromagnetic Theory	5	0	0	0	4
24PPHE11	DSEC - 1 Linear and Digital ICs and Applications	3	0	1	0	3	24PPHC22P	CC - Practical II - General Experiments	0	0	5	0	3
24PPHE12	EC – 1. Crystal growth and Thin Films/	2	0	1	0	3	24PPHE21	DSEC I - Advanced Optics	4	0	0	0	3
	2.Analysis of Crystal Structures	3	0	1	U	5	24PPHE22	DSEC II - Physics of Nanoscience and	4	0	0	0	2
24PPHA11	AECC - Solar energy	1	1	0	0	3	24111111222	Technology	4	0	0	0	3
24PCHR11	VE - 1 Human Rights	1	1	0	0	3	24PPHS21	SEC /NM- Renewable Energy and Energy Harvesting	2	0	0	0	2
TOTAL				30	21	TOTAL	I				30	23	

L-Lecture T-Tutorial P-Practical S-Seminar C-Credit

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Nanmudalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

Course		Marks									s			
Cours Code	e	Course Name	Catego	L	Т	Р	S	Credit	Hours	CIA	Exte rnal	Total		
24PPH	C11	MATHEMATICAL PHYSICS	Core	4	1	0	0	4	6	25	75	100		
		Lea	rning O	bjec	tives									
LO1	To ea treat	quip students with the mathen ment in different courses taug	natical teo ht in their	chnio r pro	ques gran	neec 1.	led f	or u	nderst	anding	theoreti	ical		
LO2	To ex	stend their manipulative skills	s to apply	mat	hem	atica	l tec	hniq	ues in	their fi	elds.			
LO3	To h	elp students apply Mathematic	cs in solv	ing p	probl	lems	of F	Physi	cs.					
LO4	To gi	ve a basic idea about different m	ethods of	matł	nema	tics,	used	in Pł	nysics.					
LO5	To U eigen	nderstand the linear equations, v values, eigen vectors, etc.	ector spac	æs, n	natric	es, li	near	trans	sforma	tions, de	etermina	ints,		
Unit			Cont	ent							E	Iours		
1	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation.						15							
2	 Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial 						15							
3	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization.						15							
4	and Eigen vectors - Cayley–Hamilton theorem –Diagonalization. Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse Transforms of derivatives and integrals						15							

	Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip.	
5	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem -Sturm- Liouville's type equation in one dimension & their Green's function.	15

CO	Course Outcomes
CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of
	basis vectors, and transformations and be able to apply them.
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral
	Formula. Able to compute many real integrals and infinite sums via complex integration.
CO3	Analyze characteristics of matrices and their different types, and the process of
	diagonalization.
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of
	different function, grasp how these transformations can speed up analysis and correlate
	their importance in technology.
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary
	value problems using Green's function. Apply special functions in computation of solutions to real
	world problems.
Textbo	oks:
1	George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists-A
	Comprehensive Guide (7th edition), Academic press.
2	P.K. Chattopadhyay, 2013, Mathematical Physics (2nd edition), New Age, New Delhi.
3	Satyaprakash, Mathematical Physics -Sultan Chand & sons, New Delhi, 2016.
4	B.D. Gupta, Mathematical Physics (4th edition) 2009, Vikas Publishing House, New Delhi.
5	K. Dass and Dr. Rama Verma, Mathematical Physics, 2014, Seventh Revised Edition, S.
	Chand & Company Pvt. Ltd., New Delhi.
Refere	nce Books:
1	E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi.
2	D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa,
	New Delhi.
3	S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E.
	Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
4	P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest,
	New Delhi.
5	C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6th Edition, International
	Edition, McGraw-Hill, New York.

Web re	Web resources:						
1	www.khanacademy.org						
2	https://youtu.be/LZnRlOA1_2I						
3	http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath						
4	https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27vS_SIED5 6gNjVJGO2qaZ						
5	https://archive.nptel.ac.in/courses/115/106/115106086/						

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	3	3	3	2	3	3	3
CO3	3	3	3	2	2	3	3	2	3	3	3
CO4	3	3	3	3	2	3	3	2	3	3	3
CO5	3	2	3	3	2	3	3	2	3	3	3
Total	13	14	15	14	12	15	15	10	15	15	15
Average	2.6	2.8	3	2.8	2.4	3	3	2	3	3	3

3	– Strong,	2-	Medium,	1-	Low
---	-----------	----	---------	----	-----

										Marks			
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PPH	CLASSICAL MECHANICS AND RELATIVITYCore51004625							75	100				
		Lea	rning O	bjec	tives	5							
LO1	To u	nderstand fundamentals of Cl	assical N	lech	anics	5.							
LO2	To un motio	nderstand Lagrangian formula	ation of r	nech	anic	s and	1 app	oly it	to so	lve equ	ation o	f	
LO3	To un motio	nderstand Hamiltonian formu on.	lation of	mec	hani	cs ar	nd ap	ply	it to se	olve equ	uation	of	
LO4	To di	iscuss the theory of small osc	illations	ofa	syste	em.							
LO5	To le	arn the relativistic formulation of	of mechan	ics of	f a sy	stem	l.						
Unit			Cont	ent							I	Hours	
1	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.					15							
2	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.					15							
3	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.					15							
4	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.					15							
5	Inerti contr mass mom trans	ial and non-inertial frames faction and time dilation – -energy relation – Minkows entum, acceleration and formations.	– Loren relativist ki's spac force i	tz tr ic ac æ – n f	ansf dditio four or	orma on o vec vect	ation of ve tors or	equ clocit – po nota	iation ies – ositior tion	s – len Einste n, veloc and th	igth in's ity, neir	15	

СО	Course Outcomes
CO1	Understand the fundamentals of classical mechanics.
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.
CO3	Students learn about motion of a particle under central force field.
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.
Textbo	oks:
1	H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
2	J. C. Upadhyaya, Classical Mechanics, Himalaya Publishing. Co. New Delhi.
3	R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi.
4	R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics – Tata – McGraw
	Hill, New Delhi, 1980.
5	N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw Hill, 2001
Referen	nce Books:
1	K. R. Symon, 1971, Mechanics, Addison Wesley, London.
2	S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
3	Gupta and Kumar, Classical Mechanics, KedarNath.
4	T.W.B. Kibble, Classical Mechanics, ELBS.
5	Greenwood, Classical Dynamics, PHI, New Delhi.
Web re	sources:
1	http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Classical_Mechanic s_optimized.pdf
2	https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdf-pdf-free.html
3	https://nptel.ac.in/courses/122/106/122106027/
4	https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecturenotes/
5	https://www.britannica.com/science/relativistic-mechanics

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	3	3	3	2	2	2	3	3	3	3
CO2	2	3	3	3	2	2	2	3	2	3	3
CO3	2	3	3	3	2	2	2	3	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3	3
CO5	2	3	3	3	2	2	2	3	3	2	3
Total	10	15	15	15	10	10	10	15	14	14	15
Average	2	3	3	3	2	2	2	3	2.8	2.8	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PPH	P13P	Linear and Digital ICs and Applications	Р	0	0	5	0	3	5	25	75	100
	Learning Objectives										·	
LO1	To ob	serve the applications of FET	and UJ	Т.								
LO2	To stu	dy the different applications of	of opera	tiona	ıl am	plifi	er ci	rcuit	s.			
LO3	To lea	rn about Combinational Logic	e Circui	ts an	d Se	quer	ntial	Logi	c Circ	cuits		
LO4	To stu	dy the applications of Timer I	C			-						
LO5	Expos	sure to digital ICs										
Unit	Exposure to digital ICs Content											
	 (Minimum of Ten Experiments from the list) 1. Construction of (a) Relaxation oscillator using UJT (2N2646), (b) FET as amplifier using (BFW10/BFW11) - Frequency response curve. 2. To study (a) The important electrical characteristics of IC 741 (i/p and o/p impedance, Voltage Gain, CMRR). (b) V-I Characteristics of different colours of LED. 3. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 4. Study of attenuation characteristics of phase shift network and design of phase shift oscillator using Op-Amp. 5. Construction of Schmidt triggers circuit using IC 741 for a given hysteresis (both AC & amp; DC Mode) - Application as squarer. 6. Construction of square wave and triangular wave generator using IC741 7. Construction of pulse generator using the IC741–Application as frequency Divider Study of (a) Arithmetic operations using IC 7483- 4-bit binary addition & amp; subtraction and (b) Arithmetic Logic Unit using IC 74181. 8. Construction of current to voltage and voltage to current conversion using IC741. 9. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 10. Construction of Schmidt trigger circuit using IC 555 for a given hysteresis 										ve. b/p rent sign a of ven l ncy ary IC ng and esis as	60

12. Study of 4-bit binary Up / Down counters, Ring counter and Johnson	
counter- IC 7476/IC 7473	
13. IC 7490 as scalar /Modulus counter and seven segment display using IC	
7447 / IC 7448	
14. Solving simultaneous equations – IC 741/ IC LM 324	
15. Op-Amp–Active filters: Butter worth filter Low pass, High pass and band	
pass filters (2ndorder)	
16. Construction of Op-Amp-4-bit D/A converter (Binary weighted and R-2R	
Ladder type)	
17. Construction of square wave generator using IC 555–Study of VCO	
18. Study of asynchronous parallel 4-bit binary Up/Down counter using IC	
7493	
19. Construction of multiplexer and demultiplexer using ICs.	

СО	Course Outcomes
CO1	Understand the applications of FET and UJT.
CO2	Apply the applications of operational amplifier circuits.
CO3	Analysis the Combinational Logic Circuits and Sequential Logic Circuits
CO4	Understand the apply the applications of Timer IC
CO5	Analysis the digital ICs
Textbo	oks:
1	R.Srinivasan K.R Priolkar, Kit Developed for doing experiments in PhysicsInstruction manual, Indian Academy of Sciences.
2	S. Poornachandra, B.Sasikala, Electronic Laboratory Primer a design approach, Wheeler
	Publishing, New Delhi.
3	K ANavas Electronic lab manual Vol I, Rajath Publishing.
4	K ANavas, Electronic lab manual Vol II, PHI eastern Economy Edition
Referen	nce Books:
1	Ramakanth A Gaykwad, Op-Amp and linear integrated circuit, Eastern Economy Edition.
2	R.S. Sirohi, A course on experiment with He-Ne Laser, John Wiley & amp; Sons (Asia)
	Pvt. Ltd.
3	Kuriachan T.D, Syam Mohan, Electronic lab manual Vol II, Ayodhya Publishing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	2	3	3	3	2	2	2	3	3	3	3
CO2	2	3	3	3	2	2	2	3	2	3	3
CO3	2	3	3	3	2	2	2	3	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3	3
CO5	2	3	3	3	2	2	2	3	3	2	3
Total	10	15	15	15	10	10	10	15	14	14	15
Average	2	3	3	3	2	2	2	3	2.8	2.8	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

~			ry							Mark	S	
Cours Code	e	Course Name	Catego	L	Т	Р	S	Credits	Hours	CIA	Exte rnal	Total
24PPH	E11	LINEAR AND DIGITAL ICs AND APPLICATIONS	DS EC	4	0	1	0	3	5	25	75	100
		Learni	ing O	bjec	tives							
LO1	To introduce the basic building blocks of linear integrated circuits.											
LO2	To teach the linear and non-linear applications of operational amplifiers.											
LO3	To introduce the theory and applications of PLL.											
LO4	To i	ntroduce the concepts of wavefor	m gen	erati	on a	nd ir	ntroc	luce	one sp	pecial fu	inctior	ICs.
LO5	Exposure to digital ICs											
Unit			Cont	ent]	Hours
	Intr	oduction, Classification of ICs,	basic	info	orma	tion	of (Dp-A	mp 7	41 and	its	
1	feat	ures, the ideal Operational amplif	ier, O	p-Aı	mp i	nterr	nal c	ircui	t. Cha	racteris	tics	12
1	and	parameters, Inverting and and I	Non-ii	nvert	ing	amp	lifie	r, ad	der, s	subtract	ion,	12
	differentiator and Integrator.											
2	Linear Applications of Op-Amp: Solution to simultaneous equations, Instrumentation amplifiers, V to I and I to V converters. Non-Linear Applications of Op-Amp: Sample and Hold circuit, Log and Antilog amplifier, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators								ns, nd nd	12		
3	Acti and Tim of f Schi (IC	ive Filters: Introduction, Butterw high pass filters. her And Phase Locked Loops: In functional diagram, monostable mitt trigger, PLL - introduction, b 566), applications of PLL	orth f ntrodu and a asic p	ilters actio astab rinci	s - 1 in to ble colle of the constant of th	st or IC opera volta	rder, 55 tion age-	2nd 5 tin s an conti	order ner, de d app colled	low pa escription olication oscillat	ss on is, or	12
4	 (IC 566), applications of PLL Voltage Regulator: Introduction, Series Op-Amp regulator, IC Voltage Regulators, Switching Regulator. D To A And A To D Converters: Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, A to D converters - counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC 									ge - pe C	12	
5	Cm NAI Con ICs, 7411 Mul Seq Reg cour	os Logic: CMOS logic levels, ND and NOR gates. nbinational Circuits Using Ttl 7 Four-bit parallel adder (IC 748 38, IC 74154), BCD to 7-segme tiplexer (IC74151), Demultiplexe uential Circuits Using Ttl 74xx isters, Universal Shift Register nter (IC 7493).	MOS 74xx 1 83), C nt dec r (IC 7 Ics: (IC	trai Ics: 1 Comp code 7415 Flip 7419	nsiste Stud parat r (IC 4). Flop 94),	ors, y of or (1 2744 os (Ie 4-bi	Bas logi IC 7 7), 1 C 74 t as	ic C c gat (485) Enco (74, 1 synch	MOS es usi), Dec der (I IC 74 tronot	Inverte ing 74X coder (1 C74147 73), Sh us bina	er, X C 7), ift ry	12

СО	Course Outcomes
CO1	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems
CO2	Develop skills to design linear and non-linear applications circuits using On-Amp and design the
002	active filters circuits.
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC
	555 timer and can solve problems related to it.
CO4	Learn about various techniques to develop A/D and D/A converters.
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits.
Textbo	oks:
1	D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India
2	Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition,
	Prentice Hall / Pearson Education, New Delhi.
3	V. Vijayendra, 2008, Introduction to Integrated electronics (Digital & Analog), S.
	Viswanathan Printers & Publishers Private Ltd, Reprint. V.
4	D. Roy Choudhary, Sheil B. Jani, "Linear Integrated Circuits", II edition, New Age, 2010.
5	David A. Bell, "Op-amp & Linear ICs", Prentice Hall of India, 5th edition, 1998.
Refere	nce Books:
1	B. L. Theraja and A. K. Theraja, 2004, A textbook of electrical technology, S. Chand & Co
2	V. K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
3	Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw
	Hill, New Delhi.
4	Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
5	Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint (2000).
Web re	sources:
1	https://nptel.ac.in/course.html/digital circuits/
2	https://nptel.ac.in/course.html/electronics/operational amplifier/
3	https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-effectcontrolled-thyristors/
4	https://www.electrical4u.com/applications-of-op-amp/
5	https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	3	3	2	2	3	3	3	3	3
CO2	3	3	3	3	1	3	3	3	2	3	3
CO3	3	3	3	3	1	3	3	3	3	3	3
CO4	3	3	3	3	1	3	3	3	3	3	3
CO5	3	3	3	2	1	1	2	3	3	2	2
Total	15	15	15	14	6	12	14	15	14	14	14
Average	3	3	3	2.8	1.2	2.4	2.8	3	2.8	2.8	2.8

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

			ry							Mark	KS	
Cours Code	e	Course Name	Catego	L	Т	Р	S	Credits	Hours	CIA	Exte	Total
24PPH	E12	CRYSTAL GROWTH AND THIN FILMS	ELE - II	4	0	1	0	3	5	25	75	5 100
		Lear	ning O	bjec	tives	5						
LO1	To a	equire the knowledge on Nucle	ation an	d Ki	inetic	cs of	crys	stal g	rowth	l .		
LO2	To u	nderstand the Crystallization Pr	rinciples	s and	l Cry	rstal	Gro	wth t	echni	ques.		
LO3	To study various methods of Crystal growth techniques.											
LO4	To understand the thin film deposition methods.											
LO5	To ur	derstand the different characterization	ation tec	hniq	ues.							
Unit			Conte	ent								Hours
1	Introduction to crystal growth – Solubility – Unsaturation - Saturation – Supersaturation –Metastable Zone width – Nucleation – homogeneous and heterogeneous nucleation – Classical theory of nucleation: Gibbs Thomson equation for Vapour - Gibbs Thomson equation for solution – Energy of formation of a nucleus – Spherical nucleus – Cylindrical nucleus – Cap-Shaped nucleus - BCF theory.									n – and son of ped	12	
2	Cryst cryst Melt meth – Va Hydr	tal Growth Mechanisms – So al growth - Bridgman techniqu ing process - Verneuil techniq od – Slow evaporation method pour growth: PVD – CVD – Ep othermal Growth.	lid phas e - Czoo ue –Me l – Tem pitaxial	se – chral thod pera Tecl	Liqu lski 1 s of ture hniqu	uid 1 neth Crys grad ues: 1	Phas od – stalli ient LPE	e an zon izatio meth - M	d Vaj e mel on: Sl nod - 0 OCVI	pour Ph ting - Sl ow cool Gel gro D – MB	nase kull ling wth E –	12
3	Symr grouj – Vo Amo	netry operations, elements – p) –Symmetry properties of the ids in close packing - Pauling' rphous - Polymorphism.	Combi e energy s rule -	natio fun Def	on o ction fects	of sy a – C in ca	mm omr rysta	etry non ıls —	eleme crysta Polyc	ents (Pe l structu rystallin	oint ures ne -	12
4	Amorphous - Forymorphism.Thin Films – Basic of Thin films and Nanostructures: Chemical deposition – Spin coating – Electron beam gun - Spray pyrolysis - Sputtering – RF Sputtering - Reactive Sputtering - Cathodic arc deposition - Pulsed Laser Deposition Technique - Ion implantation.										12	
5	Pow Spe (FT Ele (SE Mic Pho Vic	vder X – Ray Diffraction (XR ectrometry: UV-Vis-NIR Spectr Y-IR) – Elemental analysis: mental dispersive X-ray analys (M) – Transmission Electro croscopy (AFM) – Lun otoluminescence – Etching Str kers – Brinells– TGA – DTA –	RD) – S rometer Nuclea sis (EDA on Mic ninescer udies (C Dielect	ingle - Four M AX) rosce nce: Chen ric s	e cry ourie: /agn - Sc opy Th nical tudie	vstal r tran etic annin (TE herm) – es –S	XR nsfor Res ng E EM) to Mic HG	D – rm In sonar Electr – Lur ro h tests	Laue frareconce (con M Atom ninesc ardnes	pattern d analys NMR) icroscoj ic For cence ss tests	sis py ce -	12

СО	Course Outcomes
CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth.
CO2	Understand the Crystallization Principles and Growth techniques.
CO3	Study various methods of Crystal growth techniques.
CO4	Understand the Thin film deposition methods.
CO5	Apply the techniques of Thin Film Formation and thickness Measurement.
Textbo	oks:
1	V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition
2	A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)
3	M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution"
4	D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution"
5	Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA.
Refere	nce Books:
1	J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)
2	P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes".
3	P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications.
4	H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons, New York
5	B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.
Web re	sources:
1	https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp
2	https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLUuBu3WF
3	https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m
4	https://www.youtube.com/playlist?list=PLXHedI-xbyr8xII_KQFs_R_oky3Yd1Emw
5	https://www.electrical4u.com/thermal-conductivity-of-metals/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	2	1	2	1	3	2	2	3	2	1
CO2	3	3	1	3	1	2	3	2	3	3	1
CO3	3	2	1	3	1	2	3	3	3	2	1
CO4	3	2	1	2	1	2	3	3	3	2	1
CO5	2	3	3	3	1	3	3	3	2	3	3
Total	14	12	7	13	5	12	14	13	14	12	7
Average	2.8	2.4	1.4	2.6	1	2.4	2.8	2.6	2.8	2.4	1.4

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

			•							Mark	S		
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	Extern al	Total	
24PPH	A11	SOLAR ENERGY UTILIZATION	AEC	1	1	0	0	2	2	25	75	100	
		Lea	rning O	bjec	tives								
LO1	To impart fundamental aspects of solar energy utilization.												
LO2	To gi	ive adequate exposure to solar	energy i	elate	ed in	dusti	ries.						
LO3	To ha	arness entrepreneurship skills.											
LO4	To un societ	nderstand the different types of so	olar cells	and c	hann	elizi	ng th	em to	o the d	ifferent	sectors	of	
LO5	To develop an industrialist mindset by utilizing renewable source of energy.												
Unit	Content											Hours	
1	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.								ce -	6			
2	Phys: Gene evalu	ical principles of conversion or ral characteristics – Focusination of optical loss.	of solar r	adiat ctor	tion i syste	into I ems	heat – T	flat Therm	plate (nal p	collecto erforma	rs - nce	6	
3	Type – Sol	s of solar water heater - Sola ar ponds – Solar cooling syste	r heating ems.	syst	em -	- Co	llect	ors a	and sto	orage ta	nks	6	
4	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion – process flow of silicon solar cells-different approaches on the process texturization, diffusion, Antireflective coatings, metallization.								us s- ve	6			
5	Use temp electrand s	of nanostructures and nanom erature fuel cells, cathode rolytes, ceramic catalysts. Us torage. Industrial visit – data	aterials i and a se of Nar collection	n fue node no te n anc	el ce rea chno d ana	ell te actio ology lysis	chno ns, / in S – p	ology fuel hydr reser	v - hig cell ogen ntatior	gh and 1 cataly product 1.	low sts, ion	6	

СО	Course Outcomes
CO1	Gained knowledge in fundamental aspects of solar energy utilization
CO2	Equipped to take up related job by gaining industry exposure.
CO3	Develop entrepreneurial skills.
CO4	Skilled to approach the needy society with different types of solar cells.
CO5	Gained industrialist mindset by utilizing renewable source of energy.
Textbo	oks:
1	Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987.
2	Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications", Mc Graw- Hill, 2010.
3	Soteris A. Kalogirou, Solar Energy Engineering: Processes and Systems", 92
4	Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002
5	Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
Referen	nce Books:
1	Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)
2	Solar energy thermal processes – John A.Drife and William. (1974)
3	John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources, 2005
4	John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013
5	Edition, john Wiley and Sons, 2013 5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and Sons, 2007.
Web re	sources:
1	https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4fb
2	https://books.google.vg/books?id=l-XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read
3	www.nptel.ac.in/courses/112105051
4	www.freevideolectures.com
5	http://www.e-booksdirectory

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	2	3	3	2	2	2	2	1	2	2	2
CO2	2	3	3	2	2	2	2	1	2	2	2
CO3	2	3	2	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2	2
Total	9	15	12	11	10	11	10	8	10	10	10
Average	1.8	3	2.4	2.2	2	2.2	2	1.6	2	2	2

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Course Code		Course Name	Category		Т	Р	S	Credits	Hours	CIA	External	Total
24PCH	R101	HUMAN RIGHTS	COMPULSORY	1	1	0	0	2	2	25	75	100
			Learning Obj	jecti	ves			•				
LO1	To pro	vide a compreher	sive idea of English	ı lite	eratu	ire a	nd la	ngua	ige ov	er the ag	ges	
LO2	To help	student trace Engl	ish literature dating fr	om	seve	enth o	centu	iry to	presei	nt era		
LO3	To help them to understand the structural development of the English language											
LO4	To inform them about the various external linguistic influences											
LO5	To crea	ate the ability of cr	itically examining a t	ext								
Unit			Conten	nt]	Hours
1	Huma	n rights- Concepts	and Nature									6
2	Humar	n Rights – The Inte	rnational Perspective	Inte	erna	tion	al hu	ıman	rights	3		6
3	Regional Human Rights						6					
4	Human Rights in India						6					
5	Humar	n Right Violations	and Redressal Mech	anis	m							6

CO	Course Outcomes
CO1	The student will be able to know the nature of human rights its origin, the theories, the
	movements in the march of human rights and the facets of future of human rights.
CO2	The student will be able to know the international dimension of human rights, the role of
	UN and the global effort in formulating conventions and declarations
CO3	The student will be able to Perceive the regional developments of human rights in Europe,
	Africa and Asia and the enforceable value of human rights in international arena.
CO4	The student will be able to have knowledge on the human rights perspectives in India, more
	developed by its constitution and special legislations
CO5	The student will be able to know the redressal mechanism made available in case of human
	rights violation confined to India.

Textbo	oks:
1	Human Rights Lalit Parmar, Anmol Publications Pvt. Limited, 1998
2	Alston, Philip, And Frederic Megret, Eds. The United Nations And Human Rights: A
	Critical Appraisal. Second Edition. Oxford University Press, 2014.
3	Rebecce Wallace, International Human Rights, Text And Materials 1997
4	Human Rights Bharatiya Values, Mandagadde Rama Jois, Bharatiya Vidya Bhavan, 2015
5	G S Bhargave and R M Pal Human Rights of Dalit Societal Violation 1999

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	3	3	3	2	3	3	3	3	2
CO2	2	3	3	2	2	3	2	2	2	3	2
CO3	3	3	2	2	3	2	3	2	3	2	2
CO4	3	3	3	3	2	3	3	2	3	2	2
CO5	3	2	3	3	3	3	2	2	2	3	3
Total	14	14	14	13	13	13	13	11	13	13	11
Average	2.8	2.8	2.8	2.6	2.6	2.6	2.6	2.2	2.6	2.6	2.2

3	- Strong,	2-	Medium,	1-	Low
---	-----------	----	---------	----	-----

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PPH	[C21	STATISTICAL MECHANICS	Core	5	0	0	0	4	5	25	75	100
	Learning Objectives											
LO1	To acquire the knowledge of thermodynamic potentials and to understand phase trans in thermodynamics							e transi	tion			
LO2	To ic	lentify the relationship betwee	en statisti	c and	d the	rmo	dyna	mic	quant	ities		
LO3	To co	omprehend the concept of par	tition fun	ction	n, cai	noni	cal a	nd g	rand c	canonica	al enser	nbles
LO4	To g	rasp the fundamental knowled	lge about	the	three	e typ	es of	stat	istics			
LO5	To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time											
Unit			Conte	ent							H	lours
1	Phase transitions - Conditions for phase equilibrium - Clausius Clayperon equation - Gibbs Phase rule - order parameters - Landau theory - critical indices. Thermodynamic potentials, Maxwells relations, chemical potential -Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications - Third law of Thermodynamics. Order parameters - Landau's theory of phase transition - critical indices - scale transformation and dimensional analysis						15					
2	 Foundations of statistical mechanics micro and macro states of a system - Micro canonical ensemble - Phase space - Entropy - Connection between statistics and thermodynamics - Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox. 							15				
3	Traje canor statis	ectories and density of states nical ensembles - canonical c stical quantities - Energy and c	- Liouv listributic lensity fl	ille's on - 1 uctus	s the Parti ation	oren tion s.	n – funo	Cano ction	onical - Cal	and gr culation	and 1 of	15
4	Density matrix - Statistics of ensembles - Statistics of indistinguishableparticles - Postulates of classical Statistics - Maxwell-Boltzmann statistics -Postulates of quantum statistics Fermi-Dirac statistics - Ideal Fermi gas -Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas -Bose-Einstein condensation.							15				
5	Clust first field solut Fluct	ter expansion for a classical g Virial coefficient in the cluste theories of the Ising mode ions in one dimension. Corr cuations and transport phenom cuation dissipation theorem - 7	as - Viria er expans I in thre elation o nena - Br The Fokk	al equiion ee, tr f spa rown er-Pl	uatio - Isir wo a ace-t iian t lanck	on of ng m and ime moti c equ	stat odel one dep on - uatio	e – C – de dim ende Lan n	Calcula efinition ension nt flu gevin	ation of on - Me ns - Ez ctuation 's theor	the ean- kact ns - ry –	15

СО	Course Outcomes
CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states
	of matter during phase transition
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat,
	elastic moduli etc. using microscopic properties like intermolecular forces, chemical
	bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases
603	Justify the connection between statistics and thermodynamic quantities
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation
<u> </u>	between thermodynamical quantities and partition function
CO4	gas and ideal Bose gas and also to compare and distinguish between the three types of statistics
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also
	using Ising model
Textbo	oks:
1	S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
2	Sathya Prakash and J.P Agarwal, Statistical Mechanics, 7th Edition, Kedar Nath and Ram Nath& Co, Meerut, 1994
3	B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition New Age International, New Delhi.
4	J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied Publication, New Delhi.
5	F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New York.
Referen	nce Books:
1	R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter Worth Heinemann, New Delhi.
2	L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford
3	K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
4	M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, McGraw-Hill New York.
5	W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York.
Web re	sources:
1	https://byjus.com/chemistry/third-law-of-thermodynamics/
2	https://web.stanford.edu/~peastman/statmech/thermodynamics
3	https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
4	https://en.wikipedia.org/wiki/Grand_canonical_ensemble
5	https://en.wikipedia.org/wiki/Ising_model

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	1	1	2	3	1	3	3	3
CO2	3	3	3	1	1	2	3	1	3	3	3
CO3	3	3	3	1	1	2	3	2	3	3	3
CO4	3	3	3	1	1	2	3	2	3	3	3
CO5	3	3	3	1	1	2	3	1	3	3	3
Total	15	15	15	5	5	10	15	7	15	15	15
Average	3	3	3	1	1	2	3	1.4	3	3	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

			ry	ıry						Mark	S	
Cours	e	Course Name	Catego	L	Τ	Р	S	Credits	Hours	CIA	Exte rnal	Total
24PPH	C23	Quantum Mechanics -I	CC	5	0	0	0	4	5	25	75	100
	Learning Objectives											
LO1	LO1 To develop the physical principles and the mathematical background important to quantum mechanical descriptions.									tant to		
LO2	To describe the propagation of a particle in a simple, one-dimensional potential.											
LO3	To for p	ormulate and solve the Schrodi particle in a three-dimensional p	inger's otentia	equ l.	atior	n to	obta	in ei	igenve	ectors a	nd ener	rgies
LO4	To e see t	xplain the mathematical formal heir relation to fundamental syn	ism an 1metrie	d the es in	e sig natu	nific re.	ance	e of o	consta	ints of 1	notion,	and
LO5	To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.									ods		
Unit			Conte	ent							H	lours
1	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Uncertainty relation.								15			
2	Squa Squa Linea symr Rigio	re – well potential with rigid wa re potential barrier – Alpha e ar harmonic oscillator: Operato netric potential – System of tw l rotator.	ılls – S missio r meth wo inte	quar n – od – eract	e we squa - Par ing j	ell po are–v ticle partio	otent well mo cles	ial w peri ving – H	vith fin odic in a tydrog	nite wal potentia spherica gen ator	ls – ıl – ally n –	15
3	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation.								15			
4	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation - WKB quantization – Application to simple harmonic oscillator.								15			
5	simple harmonic oscillator. Eigen value spectrum of general angular momentum – Ladder operators–Matrix representation–Spin angular momentum–Addition of angular momenta–CG Coefficients–Symmetry and anti–symmetry of wave functions–Pauli's exclusion principle.									ttrix CG sion	15	

СО	Course Outcomes
CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which
	serve to formalize the rules of quantum Mechanics.
CO2	Is able to apply and analyze the Schrodinger equation to solve one dimensional
	problems and three dimensional problems.
CO3	Can discuss the various representations, space time symmetries and formulations of
	time evolution.
CO4	Can formulate and analyze the approximation methods for various quantum mechanical
	problems.
CO5	To apply non-commutative algebra for topics such as angular and spin angular
	momentum and hence explain spectral line splitting.
Textbo	oks:
1	P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2 nd
	edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.
2	G. Aruldhas, Ouantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009.
3	David I Criffithe Introduction to Quantum Machanics 4th addition Desman 2011
	David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.
4	SL Gupta and ID Gupta Advanced Quantum Theory and Fields, 1st Edition, S. Chand &
	Co., New Delhi, 1982.
5	Sathya prakash & Swati saluja, Ouantum Mechanics edition 2013.
Defense	
Kelerei	nce Books:
1	E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York,
2	V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, NewDelhi,
3	1985 L. D. Landau and F. M. Lifabitz, Quantum Machanics, 1st adition, Dargamon Press
5	L. D. Landau and E. M. Liisiniz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford 1976
4	биюна, 1976.
•	S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
5	V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd,
	Oxford, 2011.
Web re	sources:
1	
	www.its.caltec.edu/feyman/plenty.html
2	
	http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
3	
_	http://www.understandingnano.com
4	
-	http://www.nano.gov
5	
	http://www.nanotechnology.com

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	3	2	3	3	3
CO3	2	3	3	2	3	2	3	2	3	3	3
CO4	3	3	3	3	3	2	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	3	3	3
Total	14	15	15	13	15	12	15	12	15	15	15
Average	2.8	3	3	2.6	3	2.4	3	2.4	3	3	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

Course		iry				s		Mark	S			
Cours Code	e	Course Name	Catego	L	Т	Р	S	Credit	Hours	CIA	Exte rnal	Total
24PPH	C24	Electromagnetic Theory	CC	5	0	0	0	4	5	25	75	100
		Learn	ing Ob	ject	tives		•					
LO1	To ao medi	cquire knowledge about boundar a and the technique of method o	y cond f separ	itior atio	ns be on of	etwee vari	en tv able	vo sa s	me m	edia or	differe	nt
LO2	To u	nderstand Biot – Savart's law, A	mpere	's ci	ircui	tal la	iw a	nd M	lagnet	ic induc	tion	
LO3	To co gaug	omprehend the physical ideas cor es, conservation laws	ntained	l in 1	Max	well	's ec	luatio	ons, C	oulomb	& Lor	rentz
LO4	To as electr	ssimilate the concepts of propaga romagnetic waves	tion, p	olar	izati	on, r	efle	ction	and r	efractio	n of	
LO5	To g	rasp the concept of plasma as the	fourth	sta	te of	mat	ter a	nd D	ebye	shieldin	g	
Unit			Conte	nt							I	Iours
1	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization, polarization vector, relation between poarisation vector and Electric field, displacement vectors - Boundary conditions – Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion							15				
2	Biot- of a curre induc Unifo	Savart's Law - Ampere's law - N localized current distribution - nt distribution in an external ction and magnetic field in ma prmly magnetized sphere.	Magnet Magn field - acrosco	tic v etic Mopic	vecto mo agne meo	r por ment to s dia -	tenti t, fo tatic - Bo	al an orce a c ene ound	nd mag and to ergy - ary co	gnetic fi orque o Magno ondition	eld n a etic s -	15
3	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem –conservation of energy - Lorentz force in the resence of electric field and magnetic field- Conservation laws for a system of charges and electromagnetic fields							15				
4	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole							15				
5	The Boltzmann Equation - Simplified magneto-hydrodynamic equations-Electron plasma oscillations - The Debye shielding problem – Plasma confinement in a magnetic field - Magneto-hydrodynamic waves – Alfven waves and magnetosonic waves.								15			

СО	Course Outcomes
CO1	Solve the differential equations using Laplace equation three dimensional as well as one dimension and to find solutions for boundary value problems
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in different
<u> </u>	A poly the concept of propagation of EM wayes through waye guides in optical fiber
04	communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves and retarded potentials
CO5	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields
Textbo	oks:
1	D.J.Griffiths, Introduction to Electrodynamics, 2002, 3rd Edition, Prentice-Hall of India, New Delhi.
2	J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi.
3	B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata
4	P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi.
5	Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.
Refere	nce Books:
1	W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison Wesley, London.
2	J. D. Kraus and D. A. Fleisch, 1999, Electromagnetics with Applications, 5th Edition, WCB McGraw-Hill, New York
3	L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976.
4	S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
5	V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd,
	Oxford , 2011.
Web re	esources:
1	http://www.plasma.uu.se/CED/Book/index.html
2	http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html
3	http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html
4	http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutorials/
5	https://www.cliffsnotes.com/study-guides/physics/electricity-andmagnetism/electrostatics

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	3	2	3	3	3
CO3	2	3	3	2	3	2	3	2	3	3	3
CO4	3	3	3	3	3	2	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	3	3	3
Total	14	15	15	13	15	12	15	12	15	15	15
Average	2.8	3	3	2.6	3	2.4	3	2.4	3	3	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

			ſŊ							Mark	S	
Cour	:se e	Course Name	Catego	L	Т	Р	S	Credit	Hours	CIA	Exte rnal	Total
24PPI	HC22P	Practical II - General Experiments	CC - P	0	0	5	0	3	5	25	75	100
		Lear	ning O	bjec	tives		•		1			
LO1	.01 To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. To calculate the thermodynamic quantities and physical properties of materials. To analyze the optical and electrical properties of materials											
LO2	To desc	ribe the propagation of a part	icle in a	ı sim	ple,	one-	dim	ensio	onal p	otential	•	
LO3	To unde	erstand the working of LASEF	R light									
LO4	Learn th	ne principles of magneto-optic	and ele	ectro	-opti	c eff	fects	and	its ap	plication	ns.	
LO5	To imp	art an extensive understanding	; of fibe:	r anc	l non	i-line	ear o	ptics	5.			
Unit		(Minimum of Figh	Conte	ent	nte f	rom	the	lict)				Hour
	1.	Determination of Young's mo	dulus b	y Hy	perb	olic	frin	ges-(Cornu	's Meth	od	
	 Determination of Young's modulus by Elliptical fringes - Cornu's Method 											
	3.	Determination of Viscosity of	the give	en lie	quid	– M	eyer	's di	sc			
	4.	Measurement of Coefficient o	f linear	expa	ansio	n- A	ir w	edge	Meth	nod		
	5.	Determination of Rydberg's C	Constant	- Hy	ydrog	gen S	Spec	trum	1			
	6.	Thickness of air film - FP Etal	lon									
	7.	Measurement of Band gap en	ergy- T	herm	nisto	r						
	8.	Determination of Specific cha	rge of a	n ele	ectro	n — 7	Thor	nson	's met	thod.		
1	9.	Determination of e/m - Millika	an's me	thod								
1	10.	Determination of Wavelength	, Separa	tion	of w	vavel	engt	ths -	Miche	elson		
		Interferometer										
	11.	Measurement of Resistivity/C	onducti	vity	- Foi	ır pr	obe	meth	nod.			
	12.	Measurement of wavelength o	f Diode	Las	er / l	He –	Ne	Lase	r usin	g		
	Diffraction grating.											
	13. Determination of Stefan's constant of radiation from a hot body											
	14. Measurement of Susceptibility of liquid - Quincke's method											
	15.	Determination of Numerical A	perture	s and	d Ac	cept	ance	ang	le of o	optical f	ibers	
		using Laser Source.										
	16. Determination of I-V Characteristics and efficiency of solar cell											

СО	Course Outcomes
CO1	Understand the strength of material using Young's modulus
CO2	Acquire knowledge of thermal behavior of the materials
CO3	Understand theoretical principles of magnetism through the experiments.
CO4	Acquire knowledge about arc spectrum and applications of laser
CO5	Improve the analytical and observation ability in Physics Experiments
Textbo	oks:
1	Gupta and Kumar, Practical Physics, Pragati Prakasan
2	R.Srinivasan K.R Priolkar, Kit Developed for doing experiments in Physics Instruction manual, Indian Academy of Sciences
Referen	nce Books:
1	D.Chattopadhayay, C.R. Rakshit, An advanced course in Practical Physics, New Central Book Agency Pvt. Ltd
2	S.P Singh, Advanced Practical Physics, Pragati Prakasan
3	R.S. Sirohi, A course on experiment with He-Ne Laser, John Wiley & Sons (Asia) Pvt.ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	3	2	3	3	3
CO3	2	3	3	2	3	2	3	2	3	3	3
CO4	3	3	3	3	3	2	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	3	3	3
Total	14	15	15	13	15	12	15	12	15	15	15
Average	2.8	3	3	2.6	3	2.4	3	2.4	3	3	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PPH	E21	Advanced Optics	DSEC	3	0	0	0	3	3	25	75	100
		Lea	rning O	bjec	tives	5	•					
LO1	To ka	now the concepts behind pola ets of laser.	rization a	ind c	ould	purs	sue r	esea	rch w	ork on a	pplicat	ion
LO2	To in	npart an extensive understand	ing of fib	er a	nd no	on-li	near	opti	cs.			
LO3	O3 To study the working of different types of LASERS											
LO4	To differentiate first and second harmonic generation.											
LO5	Learn the principles of magneto-optic and electro-optic effects and its applications.									ons.		
Unit	Content									H	lours	
1	POLARIZATION AND DOUBLE REFRACTION: Classification of polarization –Polarizer and analyzer – Malus law – Production of polarized light – Polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction –Quarter and half wave plates – Analysis of polarized light – Optical activity.								of ht – 1 - and	12		
2	LAS laser laser laser	ERS: Basic principles –Spor s and its applications –Solid s –He-Ne laser – CO2 laser –	ntaneous state lase Chemica	and ers– al las	stin Rub sers -	nulat y las – HC	ed e ser – Cl las	emiss -Nd: ` ser –	ions - YAG Semi	–Types laser –g conduct	of gas tor	12
3	FIBER OPTICS: Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers.							er – n in ode dex	12			
4	NON-LINEAR OPTICS : Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Optical mixing – Parametric generation of light – Self-focusing of light							12				
5	MAGNETOOPTICS AND ELECTRO-OPTICS: Magneto-optical effects– Zeeman effect–Inverse Zeeman effect–Faraday effect –Voigt effect–Cotton- mouton effect –Kerr magneto-optic effect – Electro-optical effects–Stark effect– Inverse stark effect–Electric double refraction –Kerr electro-optic effect.							cts– con- cct–	12			

СО	Course Outcomes
CO1	Discuss the transverse character of light waves and different polarization phenomenon
CO2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices
CO3	Demonstrate the basic configuration of a fiber optic – communication system and advantages.
CO4	Identify the properties of nonlinear interactions of light and matter
CO5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field
Textbo	oks:
1	B. B. Laud, 2017, Lasers and Non – Linear Optics, 3rd Edition, New Age International (P) Ltd.
2	Ajoy Ghatak, 2017, Optics, 6th Edition, McGraw – Hill Education Pvt. Ltd.
3	William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York
4	J. Peatros, Physics of Light and Optics, a good (and free!) electronic book
5	B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience
Refere	nce Books:
1	F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th Edition), McGraw – Hill International Edition.
2	Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH, Varley GmbH
3	Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4th Edition, Cambridge University Press, New Delhi, 2011
4	Y. B. Band, Light and Matter, Wiley and Sons (2006)
5	R. Guenther, Modern Optics, Wiley and Sons (1990)
Web re	esources:
1	https://www.youtube.com/watch?v=WgzynezPiyc
2	https://www.youtube.com/watch?v=ShQWwobpW60
3	https://www.ukessays.com/essays/physics/fiber-optics-and-it-applications.php
4	https://www.youtube.com/watch?v=0kEvr4DKGRI
5	http://optics.byu.edu/textbook.a

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3
Total	15	15	15	12	15	15	15	15	15	15	15
Average	3	3	3	2.4	3	3	3	3	3	3	3

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PPH	E22	Physics of Nanoscience and Technology	DSEC	4	0	1	0	3	4	25	75	100
	Learning Objectives											
LO1	Physics of Nanoscience and Technology is concerned with the study, creation, manipulation applications at nanometer scale.								ilation a	and		
LO2	2 To provide the basic knowledge about nanoscience and technology.											
LO3	To le	arn the structures and properties	of nanom	nateri	als.							
LO4	To ac	equire the knowledge about synt	hesis metl	nods	and	chara	icteri	izatio	n tech	niques.		
LO5	To obtain the knowledge about the nanomaterials applications.											
Unit	Content								H	Iours		
1	FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY: Introduction of Nanoscience and Nanotechnology, Historical Perspective on Nanomaterial and Nanotechnology - Nanomaterials and its applications – Classification of nanoscale dimensions: 0D, 1D, 2D - Quantum dots – Quantum wires – Quantum wells - Classification of Metals, Semiconductors, and Insulators.							12				
2	PRO Melti Elast Reso Mag	PERTIES OF NANOMATER ng points, specific heat capacit ic properties – strength – du nance - Electrical propertie netic properties : Diluted magne	RIALS: P ty and lat ctility - s: Condu etic semico	hysio tice Opti octivi	cal p cons cal ty, 1 ctor (tant prop Ferro (DM)	erties - M oertie oelec S).	s of echa es: S trics	Nanon nical ourface and	material behavio Plasmo dielectri	ls: or: on cs	12
3	SYN depos Plasm - Pho	THESIS AND FABRICATIO sition - sol-gel – Wet deposition na arching - Electrospinning m tolithography.	N: Physic techniqu ethod - B	cal va es -] Ball r	apour Elect nillir	r dep roch ng te	oositi emic chnio	ion - al de que -	Chem positic - Nanc	nical vap on metho olithogra	oour od – phy	12
4	CHARACTERIZATION TECHNIQUES: Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibration sample magnetometer (VSM).							12				
5	APPLICATIONS OF NANOMATERIALS: Sensors: Nanosensors – Different types of Nanosensors - Nano Electronics: Nanobots - Display screens - GMR read/write heads – Carbon Nanotube Emitters (CNT) – Photocatalytic application: Air purification, water purification - Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: Batteries - Fuel Cells - Electrochemical Capacitors							12				

СО	Course Outcomes
CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and Should comprehend the surface effects of the nanomaterials.
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.
CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.
Textbo	oks:
1	A textbook of Nanoscience and Nanotechnology, Pradeep.T, Tata McGraw-Hill
	Publishing Co. (2012).
2	Principles of Nanoscience and Nanotechnology, M.A.Shah, Tokeer Ahmad, Narosa
	Publishing House Pvt Ltd., (2010).
3	Introduction to Nanoscience and Nanotechnology, K.K.Chattopadhyay and A.N.Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
4	Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).
5	Nanotechnology and Nanoelectronics, D.P.Kothari, V.Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018).
Referen	nce Books:
1	Nanostructures and Nanomaterials- HuozhongGao-Imperial College Press (2004).
2	Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA
3	Nano particles and Nano structured films; Preparation, Characterization and Applications,
	J.H.Fendler John Wiley and Sons. (2007)
4	Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al., Universities Press. (2012)
5	The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics Pentagon Press, New Delhi.
Web re	sources:
1	www.its.caltec.edu/feyman/plenty.html
2	http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
3	http://www.understandingnano.com
4	http://www.nano.gov
5	http://www.nanotechnology.com

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	1	3	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3	2
CO4	3	3	3	2	1	1	3	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3	2
Total	15	15	13	10	5	5	15	15	15	15	13
Average	3	3	2.6	2	1	1	3	3	3	3	2.6

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Marks			
Course Code		Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PPHS21		Renewable Energy and Energy Harvesting	SEC/ NM	2	0	0	0	2	2	25	75	100	
	Learning Objectives												
LO1	To learn about alternate sources of energy.												
LO2	To know the ways of effectively utilizing the solar energy.												
LO3	To study the method of harvesting wind energy and ocean energy.												
LO4	To learn the techniques useful for the conversion of hydro energy and piezo energy harvest							rvesting	5.				
LO5	To know about utilization of electromagnetic energy harvesting.												
Unit			Cont	ent							I	Hours	
1	Fossil fuels and Alternate Sources of energy -Fossil fuels and nuclear energy, their limitation, need of renewable energy. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Thermal Energy Conversion, biomass, biochemical conversion, biogas generation, geo thermal energy.									gy, in gy nal	6		
2	Solar energy- Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems.									lar gy, en of	6		
3	Wind Energy harvesting: Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid inter connection topologies. Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass									in es. we gy	6		
4	Hydro Energy : Hydropower resources, hydropower technologies, environmental impact of hydro power sources, Piezoelectric Energy harvesting : Introduction characteristic, parameter of piezoelectricity, materials and mathematical description of piezoelectricity, modeling piezoelectric generators, Piezoelectric energy harvesting applications									ntal ion cal tric	6		
5	Electromagnetic Energy Harvesting: Linear generators, physics mathematicalmodels, recentapplications-Carboncaptured technologies, cell, batteries, power consumption								6				

СО	Course Outcomes
CO1	Explore the Principles, various types of renewable energy sources and technologies behind energy harvesting
CO2	Evaluate the economic factors influencing the adoption of renewable energy and energy
	harvesting, including cost-benefit analysis and return on investment.
CO3	Analyze the environmental benefits and challenges associated with different renewable energy technologies and energy harvesting methods.
CO4	Design integrated renewable energy systems that incorporate energy harvesting solutions for improved efficiency and sustainability.
CO5	Identify and analyze real-world applications of renewable energy and energy harvesting in various sectors, such as residential, commercial, and industrial.
Textbo	oks:
1	Non-conventional energy sources-G. D Rai–Khanna Publishers ,New Delhi
2	Solar energy –MP Agarwal –S chand and Co.Ltd.
3	Solar energy - Suhas P Sukhative Tata Mc Graw-Hill Publishing Company Ltd.
4	Godfrey Boyle, "Renewable Energy ,Power for a sustainable future",2004, Oxford University Press, in association with the Open University.
5	Dr. P Jayakumar, Solar Energy: ResourceAssesmentHandbook,2009
Refere	nce Books:
1	Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)
2	Solar energy thermal processes – John A.Drife and William. (1974)
3	John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005
4	John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013
5	Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and Sons,2007.
Web re	esources:
1	https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4fb
2	https://books.google.vg/books?id=l-XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read
3	www.nptel.ac.in/courses/112105051
4	www.freevideolectures.com
5	http://www.e-booksdirectory.com

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	1	3	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3	2
CO4	3	3	3	2	1	1	3	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3	2
Total	15	15	13	10	5	5	15	15	15	15	13
Average	3	3	2.6	2	1	1	3	3	3	3	2.6

3 – Strong, 2- Medium, 1- Low