

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG & Research Department of Mathematics

for

Postgraduate Programme

Master of Science in Mathematics

From the Academic Year 2024-25

CONTENT

- 1. Preamble
- 2. Programme Outcomes
- 3. Programme Specific Outcomes
- 4. Eligibility for Admission
- 5. Methods of Evaluation and Assessments
- 6. Skeleton & Syllabus

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION

1. Preamble

The Department endeavors to be a center of excellence nurturing joyful curiosity in learning, enthusiastic creativity in research, and passion for building a respectful, free, transparent and dynamic pedagogic community.

To provide an education that transforms students from curriculum to the needs of society. Offer broad and balanced academic programs that are mutually reinforcing and emphasize high quality and creative instruction to the students. We aim to develop well-rounded and thoughtful students prepared to cope with a changing post-modern and globalized world. To provide high quality education, respectful and inclusive environment that builds a foundation for life-long learning.

The Department of Mathematics established in the year 1994 with UG course and it offers PG since 2000. The Department offers research program M.Phil from 2012 and Ph.D from 2022. The objective of the Department is to enhance student knowledge towards global perspective and skill oriented. The Department is well known for is teaching and learning process of quality education. The department organizes International Conferences, Seminars, and Hand son training, Workshops, Competitions, Guest lecturers to inculcate the skill of students to face contemporary growth in Mathematics. Memorandum of Understanding with reputed Institutions. Apart from curriculum the department offers Aptitude test, Bridge Course Value Added Courses and NET/SET/CSIR Coaching for the students.

PROGRAMME OUTCOMES (PO)

Programme	M.Sc., Mathematics
Programme Code	PS09
Duration	2 years[PG]
Programme Outcomes	 PO1: Problem Solving Skill : Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill : Foster analytical and critical thinking abilities for data-based decision-making. PO3: Ethical Value : Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities. PO4: Communication Skill : Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill : Capability to lead themselves and the team to achieve organizational goals. PO6: Employ ability Skill : Inculcate contemporary business practices to enhance employability skills in the competitive environment. PO7: Entrepreneurial Skill : Equip with skills and competencies to become an entrepreneur. PO8:Moral and ethical awareness / reasoning : Ability to embracemoral / ethical values in conducting one's life
Programme Specific Outcomes:	 PSO1: Placement To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions. PSO2-Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations. PSO3-Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

Eligibility for Admission:

Candidate for admission to the first year of M.Sc Mathematics Department of Mathematics shall be required to have passed the UG with Mathematics

	Methods of Evaluation						
Internal Evaluation	1	25 Marks					
External Evaluation	End Semester Examination	75 Marks					
	Total	100 Marks					
	Methods of Assessment						
Recall (K1)	Recall (K1) Simple definitions, MCQ, Recall steps, Concept definitions						
Understand / Comprehend (K2)	MCQ, True/False, Short essays, Concept explana overview	tions, short summary or					
Application (K3)	Suggest idea/concept with examples, suggest form Observe, Explain	ulae, solve problems,					
Analyze (K4)	Problem-solving questions, finish a procedure in r Between various ideas, Map knowledge	nany steps, Differentiate					
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify	with pros and cons					
Create (K6) Check knowledge in specific or off beat situations, Discussion, Debating or Presentations							

Methods of Evaluation and Assessment

	Semester-I							Semester- II					
Code	Course Title	Hours Distribution C				С	Code	Course Title	Hours Distribution				
		L	Т	T P S			L	Т	Р	S	l		
24PMAC11	CC-1Algebraic Structure	2	1	2	0	4	24PMAC21	CC-4 Advanced Algebra	3	1	1	0	
24PMAC12	CC-2 Real Analysis I	3	1	2	0	4	24PMAC22	CC-5 Real Analysis II	3	1	1	0	
24PMAC13	CC-3 Ordinary Differential Equations	3	1	1	0	3	24PMAC23	CC-6 Partial Differential Equations	3	1	1	0	
24PMAE11/ 24PMAE12	EC-1 Graph Theory and Applications / Number Theory and Cryptography	3	1	1	0	3	24PMAC24	CC–7 Difference Equations	3	1	1	0	
24PMAE13/ 24PMAE14	EC-2 Discrete Mathematics /Fuzzy Sets and their Applications	3	1	1	0	3	24PMAE21/ 24PMAE22	EC-3 Tensor Analysis and Relativity Theory /Mathematical Statistics	2	1	1	0	
24PMAA11	AECC –1 Mathematical Documentation Using LATEX	1	0	1	0	2	24PMAE23/ 24PMAE24	EC-4 Machine Learning /Neural Networks	2	1	1	0	
24PCHR11	VE-1 Human Rights	1	1	0	0	2	24PMAS21	SEC -1(NME) Numerical Methods	1	1	0	0	
					30	21						30	

L-Lecture

T-Tutorial

P-Practical

S-Seminar C-Credit

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Naan mudhalvan within the forth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PMA	C11	Algebraic Structure	Core Course 1	2	1	2	0	4	5	25	75	100
			Learning O	bjec	tives	6						
LO1	To K	now the concepts on class	equations									
LO2	To A	cquire Knowledge on Sol	vable Groups	5								
LO3	To G	ain the knowledge on Tra	nsformations									
LO4	To U	nderstanding the concept	of Jordan For	rms								
LO5	To de	evelop strong background	on Trace and	l Tra	nspo	ose.						
Unit			Conte	ent								Hours
1		ting Principle- Class equa w's theorems	tion for finit	e gro	oups	and	its a	pplic	ations	5-		15
2	Solva	able groups- Direct produc	cts- Finite ab	elian	gro	ups-	Mod	lules				15
3	Linear Transformations: Canonical forms–Triangular form- Nilpotent Transformations									15		
4	Jorda	n form- rational canonica	l form									15
5		e and transpose- Hermitiar Iratic form	n, unitary, nor	rmal	tran	sfor	nati	ons, 1	real			15

СО	Course Outcomes
CO1	To Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups
CO2	To Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules
CO3	To Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space in to invariant Subspaces
CO4	To Define Jordan, canonical form, Jordan blocks, define rational canonical form, define company on matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation
CO5	To Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form

Textbo	oks:
1	I.N. Herstein Topics in Algebra (II Edition) Wiley Eastern Limited, NewDelhi, 1975
2	Algebra-Michal Artin-PHI Learning Pvt.Ltd,2009
3	University Algebra-2 nd Edition-N.S. Gopalakrishnan, University of Poona, pune
4	Modern Algebra- S.Arumugum, A.T. Asaac, SCI Tech Publications Pvt Ltd
5	Modern Algebra-V-IIK.J Narayanan, T.K. Manicavachagam Pillai
Refere	nce Books:
1	M. Artin, Algebra ,Prentice Hall of India,2006
2	I.S.LutherandI. B.S.Passi, Algebra, Vol. I–Groups(1996)
3	I.S.LutherandI. B.S.Passi, Algebra, Vol.I Groups (1996); Vol.II Rings, Narosa Publishing House, New Delhi, 1999
4	D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition),NewYork.1997
5	N. Jacobson, Basic Algebra, Vol.I & II W.H. Freeman (1980); also published by Hindustan Publishing Company, New Delhi.
Web re	esources:
1	http://mathforum.org,http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org,www.algebra.com

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	3	2	3	2	2
CO2	2	3	3	3	3	3	2	2	3	2	3
CO3	3	3	3	2	3	3	3	2	3	2	2
CO4	2	3	3	2	3	3	2	2	3	2	2
CO5	3	3	2	3	3	3	3	2	3	2	3
Total	13	15	14	12	15	15	13	10	15	10	12
Average	2.6	3	2.8	2.4	3	3	2.6	2	3	2	2.4

3 – Strong,	2-	Medium,	1-	Low
-------------	----	---------	----	-----

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PMA	AC12	Real Analysis I	Core Course 2	3	1	2	0	4	6	25	75	100
			Learning O	bjec	tives	5						
LO1	To work comfortably with functions of Bounded Variation											
LO2	2 To develop the concept of Riemann-Stieltjes Integral											
LO3	To undete the Knowledge on Sufficient and Necessary Conditions for Diamonn Stic											tjes
LO4	To C	onstruct the various prope	erties of Infin	ite S	eries	5						
LO5	To fo	ormulate distinct limiting	operations									
Unit			Cont	ent								Hours
1	 Unit-I :Functions of bounded variation Introduction-Properties of monotonic functions -Functions of bounded variation Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions- Continuous functions of bounded variation. Infinite Series: Absolute and conditional convergence- Dirichlet's test and Abel's test-Rearrangement of series-Riemann's theorem on conditionally Convergent series. 										18	
2	Intro Prope integ - Mo linear	-II: The Riemann-Stielt duction - Notation - The erties - Integration by p ral-Reduction to a Riema notonically increasing int rity properties of upper, lo rems.	definition of arts- Chango nn Integral–I tegrators, Up	e of Euler per a	vari 's su and l	able mm owe	in atior r int	a Ri 1 fori egral	emanr nula ls - Ac	n -Stiel Iditive	tjes and	18
3	theorems. Unit-III: The Riemann-Stieltjes Integral Integrators of bounded variation-Sufficient conditions for the existence of R Riemann-Stieltjes integrals-Necessary conditions for the existence of R Sintegrals- Mean value theorems -integrals as a function of the interval – Second fundamental theorem of integral calculus-Change of variable Second Mean Value Theorem for Riemann integral-Riemann Stieltjes integrals depending on a parameter- Differentiation under integral sign-Lebesgue criteria									R nd ls	18	
4	Unit Dout suffic Cesar Powe	r existence of Riemann in -IV: Infinite Series and ble sequences - Double section for equa rosumm ability-Infinite p er series - Multiplication ion- Bernstein's theorem-	infinite Prod eries - Rearra lity of iterat roducts. of power ser	ngen æd s	nent eries The	- N Tay	Mult lor's	iplica serie	ation of the second sec	of serie	es –	18

	Unit-V:Sequences of Functions	
	Point wise convergence of sequences of functions-Examples of sequences of real	18
5	-valued functions-Uniform convergence and continuity- Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration – Non-uniform Convergence and Term-by-term Integration-Uniform convergence and differentiation-Sufficient condition for Uniform convergence of a series- Mean convergence.	

СО	Course Outcomes
CO1	To Analyze and evaluate functions of bounded variation and Rectifiable Curves.
CO2	To Describe the concept of Riemann-Stieltjes integral and its properties.
CO3	To Demonstrate the concept of step function, upper function, Lebesgue function and their Integrals
CO4	To Construct various mathematical proofs using the properties of Lebesgue integrals and Establish the Levimo not one convergence theorem.
CO5	To Formulate the concept and properties of inner products, norms and measurable functions.
Textbo	oks:
1	Tom M.Apostol: Mathematical Analysis,2ndEdition,Addison-WesleyPublishing Company Inc. NewYork, 1974.
2	Elements of Real Analysis- Shanti Narayan, Dr.M.D.Raisinghania,S.Chand
3	IntroductiontoRealAnalysis,FourthEdition,RobertG.Bartle,DpnaldR.Sherbert
4	Real Analysis (Real analysis and Theory of Convergence), Vimal Saraswat, AnilKumar Menaria, Gajendrapal Singh Rathore)
5	Real Analysis with Theory and Application ,Manoj Gunjal Raja Raman , Rohit Muranjan ChandanK. Roy
Referen	nce Books:
1	Rudin,W. Principles of Mathematical Analysis,3rdEdition.Mc Graw HillCompany,New York,1976.
2	Malik,S.C. and Savita Arora. Mathematical Anslysis, Wiley Eastern Limited. NewDelhi, 1991.
3	Sanjay Arora and BansiLal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1999
4	Gelbaum, B.R.andJ.Olmsted, Counter Examples in Analysis, Holdenday, San Francisco, 1964.
5	A.L.Gupta and N.R.Gupta, Principles of Real Analysis, Pearson Education, (Indian print) 2003.
Web re	esources:
1	http://ocw.mit.edu/ocwweb/Mathematics
2	http://www.opensource.org/
3	http://www.mathpages.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	2	3	3	3	2	3	2	3	2
CO2	2	3	3	3	3	2	2	3	2	3	3
CO3	3	3	2	3	3	3	2	3	2	3	2
CO4	2	3	2	3	3	2	2	3	2	3	2
CO5	3	2	3	3	3	3	2	3	2	2	3
Total	13	14	12	15	15	13	10	15	10	14	12
Average	2.6	2.8	2.4	3	3	2.6	2	3	2	2.8	2.4

Mapping with Programme Outcomes and Programme Specific Outcomes

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PMA	C13	Ordinary Differential Equations	Core Course 3	3	1	1	0	3	5	25	75	100
		L	earning O	bjec	tives	5		-				
LO1	To develop strong background on finding solutions to linear differential equations											
LO2	To recognize the concept of Wronskian											
LO3	To understand the Problems solving techniques in Legendre Polynomial											
LO4	To formulate the Euler Equation with Second order											
LO5	To Learn Various the oreticalideason successive approximations											
Unit	Content										Hours	
1	Linear equations with constant coefficients Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian- Non- homogeneous											15
2	equation of order two Linear equations with constant coefficients Homogeneous and non-homogeneous equation of order n–Initial value problems-Annihilator method to solve non-homogeneous Equation Algebra of constant coefficient operators											15
3	Algebra of constant coefficient operators. Linear equation with variable coefficients Initial value problems-Existence and uniqueness theorems–Solutions to solve anon-homogeneous equation –Wronskian and linear dependence– Reduction of the order of a homogeneous equation–homogeneous equation with analytic coefficients-The Legendre equation.											15
4	Linear equation with regular singular points Euler equation – Second order equations with regular singular points – Exceptional cases–Bessel Function											15
5	varia Lipso	ence and uniqueness of soluble separated – Exact equat chitz condition–convergence ence theorem.	ion – metho	od of	suc	cessi	ive a	ppro	ximat	ions-th	e	15

СО	Course Outcomes
CO1	To Establish the qualitative behavior of solutions of systems of differential equations
CO2	To Develop analytical skills necessary for understanding and manipulating differential
	Equations
CO3	To Analyse solutions using appropriate methods for linear equation with variable coefficient

CO4	To Analyse solutions using appropriate methods and give examples
CO5	To Learn techniques for solving inear ODEs with Bessel's Function
Textbo	oks:
1	E.A.Coddington, An introduction to ordinary differential equations(3rd
	Printing) Prentice-Hall of India Ltd., New Delhi, 1987.
2	AText book on Ordinary Differential Equation Springer-Shair Ahmad, Antonio Ambrosetti
3	Ordinary Differential Equation: Basics and Beyound- DaridG.Schacffer
4	Ordinary Differential Equation With Application-Sze-Bihsu-WorldScientific
5	Solved Problems in Ordinary Differential Equation and its application–Garne Joshuallan
Refere	nce Books:
1	Williams E. Boyce and Richard C. DI Prima, Elementary differential equations and
	boundary value problems, John Wiley and sons, New York, 1967.
2	George F Simmons, Differential equations with applications and Historical notes, Tata Mc Graw Hill, NewDelhi, 1974.
3	N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965
4	An Introduction to Ordinary Differential Equation–Springer–RaviP.Agarwal
5	Textbook of Ordinary Differential Equation-C.R.Monotal–Easter Economy Edition
Web re	esources:
1	http://mathforum.org,http://ocw.mit.edu/ocwweb/Mathematics,http://www.opensource.org,www.ma thpages.com

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	3	2	3	2	3	2
CO2	2	2	3	3	3	2	2	3	2	3	3
CO3	3	3	2	3	3	3	2	3	2	3	2
CO4	3	2	2	3	3	2	2	3	2	3	2
CO5	3	3	3	3	3	3	2	3	2	2	3
Total	14	13	12	15	15	13	10	15	10	14	12
Average	2.8	2.6	2.4	3	3	2.6	2	3	2	2.8	2.4

										Mark	S		
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total	
24PMAE11		Graph theory and Application	Elective Course 1	3	1	1	0	3	5	25	75	100	
	Learning Objectives												
LO1 To study and develop the concept of graphs													
LO2	То	To demonstrate the ideas on Euler graph and Hamilton graph											
LO3	To understand the definitions of Matchings and Edge colourings												
LO4	To apply the knowledge of Ramsey's Theorem												
LO5	To Explicate the applications of Planarity and colourability												
Unit	Content											Hours	
	Grap	hs, Subgraphs and T	Trees										
1	Matri	hs and simple graph ices- Subgraphs - Ver	tex Degrees - Paths							•		15	
	0	s and Bonds - Cut Ver										15	
2		ectivity, Euler Tour ectivity - Blocks - Eu	·	cies								15	
3	Matc	chings, Edge Colouri chings - Matchings an	ngs	tite (Grapl	hs —]	Edge	Chro	omatic			15	
		pendent Sets and Cli	ques, Vertex Colou	rings	5								
4	Independent sets and Chiques, Vertex Colourings Independent sets - Ramsey's Theorem – Chromatic Number - Brooks' Theorem - Chromatic Polynomials									15			
_		ar Graphs		_									
5		and planar Graphs -	Dual graphs - Euler's	s For	mula	ı - Th	e Fiv	ve-Co	olour			15	
	Theorem												

CO	Course Outcomes
CO1	Grasp features and properties of various types of graphs.
CO2	Demonstrate capacity of illustration for mathematical reasoning through analyzing, providing and explaining concepts of Eulerian circuits and Hamiltonicity in graphs.
CO3	Understand the definitions and properties of matching and independent sets.
CO4	Apply the concepts of graphs to model them in real life situations.
CO5	Explicate the applications of planarity and colorability.
Textbo	oks:
1	J.A.Bondy and U.S.R. Murthy, Graph Theory and Applications,
	Macmillan, London, 1976
2	R.J.Wilson and J.J.Watkins, Graphs : An Introductory Approach, John Wiley and Sons, New York, 1989.

3	R.J. Wilson, Introduction to Graph Theory, Pearson Education, 4th Edition, 2004, Indian Print.
4	S.A.Choudum, A First Course in Graph Theory, MacMillan India Ltd. 1987
5	Graph Theory. By R. Balakrishnan, K. Ranganathan
Refere	nce Books:
1	Invitation to Graph Theory, S.Arumugam. S.Ramachandran, SCITECH Publications
	(INDIA) PVT.LTD
2	Graph Theory, J.A Bondy
3	J.Clark and D.A.Holton, A First look at Graph Theory, Allied Publishers, New Delhi, 1995.
4	R.Gould. Graph Theory, Benjamin/Cummings, Menlo Park, 1989
5	A.Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989.
Web re	esources:
1	https://nptel.ac.in/courses/111106050/

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	2	2	2	3	2	2	2	2	2
CO2	3	3	2	2	2	3	2	2	2	2	2
CO3	3	3	2	2	3	3	2	2	2	2	3
CO4	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	2	3	3	3	2	3	2	3
Total	15	15	12	11	13	15	12	11	12	11	13
Average	3	3	2.4	2.2	2.6	3	2.4	2.2	2.4	2.2	2.6

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24UMA	A F11	Discrete Mathematics	Elective Course 2	3	1	1	0	3	5	25	75	100
			Learning O	bjec	tives	5						
LO1 To Introduce the algebraic structures of lattices and Boolean algebra. Construct the switch applications										e switch	ing	
LO2												
LO3	To Inculcate the polynomials over finite fields, Irreducibility and Factorization of poly										polynor	nials
LO4	To Indoctrinate the coding theory with the linear and cyclic codes											
LO5	To ac	equire the knowledge of co	ding theory									
Unit			Cont	ent							H	lours
1		ces erties and Examples of Latti- olean Polynomials	ces – Distribut	ive L	attic	es –	Bool	ean A	Algebra	as		15
2		ications of Lattices tching Circuits – Applicatio	ns of Switchin	g Ciı	cuits	5						15
3	Finite Fields										15	
4	4 Polynomials Factorization of Polynomials over Finite Fields											15
5		ng Theory r Codes – Cyclic Codes										15

CO	Course Outcomes
CO1	To Know the algebraic structures of lattices and Boolean algebra, and sketch the minimization of Boolean polynomials.
CO2	To Model the switching circuits with applications
CO3	To Understand the finite fields and its mathematics properties.
CO4	To Acquire the notions of the polynomials over finite fields, Irreducibility and factorization of polynomials
CO5	To Apply the coding theory with the linear and cyclic codes in cryptography
Textbo	oks:
1	Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Indian Reprint, Springer Verlag, NewYork, 2006
2	N.Chandrasekaran and M.Umaparvathi, Discrete mathematics, PHI
	Learning Private Limited, New Delhi, 2010.
3	Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Indian Reprint, Springer Verlag,
	New York, 2006.

4	J.L.Gersting, Mathematical Structures for Computer Science, 3 rd Edn., Computer Science Press, New York.
5	S.Wiitala, Discrete Mathematics - A Unified Approach, Mc Graw Hill Book Co
Referen	nce Books:
1	A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., New Jersey.
2	J.L.Gersting, Mathematical Structures for Computer Science, 3rdEdn., Computer
	Science Press, NewYork.
3	S.Wiitala, Discrete Mathematics - A Unified Approach, Mc Graw Hill Book Co
Web re	sources:
1	http://www.discrete-math-hub.com/resources-and-help.html
2	https://onlinecourses.nptel.ac.in/noc22_cs123/preview
3	https://onlinecourses.nptel.ac.in/noc22_cs85/preview

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
C01	3	3	2	2	2	3	2	3	3	2	3
CO2	3	3	2	2	3	3	3	3	3	3	3
CO3	3	3	2	2	2	3	2	3	3	2	3
CO4	3	3	2	2	3	3	3	3	3	3	3
CO5	3	3	2	2	3	3	3	3	3	3	3
Total	15	15	10	10	13	15	13	15	15	13	15
Average	3	3	2	2	2.6	3	2.6	3	3	2.6	3

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24UM	AC21	Mathematical Documentation Using Latex	Allied Elective core course 1	1	0	1	0	2	2	25	75	100
Learning Objectives												
LO1	Inculcate the computer knowledge											
LO2	Introduce the LaTeX software											
LO3	Train	Train in the Preparation of Project and dissertations using LaTex.										
LO4	Educate the Latex coding											
LO5	Understand the concepts of Cross References, Footnotes, Margin pars and Endnotes.											
Unit			Cont	ent]	Hours
1	What	-I:The Basics of LaTeX is LaTeX-Simple Typese : Type Style - Type Size	tting: Space	s, Qı	iotes	, Da	shes	, Spe	cial S	ymbols	-	6
2	Doci	-II:The Document ument Class: Font Size, Pa bering – Formatting Leng	± .	<u> </u>			<u> </u>	•		0	cs)	6
3		-III:The Tables layed Text: Making Lists	– Rows & C	olun	ıns: '	Tabl	es oi	nly				6
4	The H Com	Displayed Text: Making Lists – Rows & Columns: Tables only Unit– IV:Type setting Mathematics The Basics: Superscripts & Subscripts, Roots, Mathematical Symbols – Custom Commands – More on Mathematics: Single Equations, Group of Equations, Numbered Equations									n	6
5	Math	-V:Mathematics Miscell ematics Miscellany: Matr r – Typing Simple Theore	ices, Dots, D	Delim	iters	s, Af	fixin	g Sy	mbols	over o	r	6

СО	Course Outcomes
CO1	After studying this course the students will be able to create and typeset a LaTeX document
CO2	After studying this course the students will be able to create and typeset mathematical document
CO3	After studying this course the students will be able to learn about pictures and graphics in LaTeX
CO4	After studying this course the students will be able to automatic generation of a table of contents, bibliographies and indexes

CO5	After studying this course the students will be able to use tabular and array environments within
	LaTex.
Textbo	oks:
1	A Primer, Latex Tutorials, Indian TEX users group, Trivandrum, India.
2	A guide to Latex and Electronic publishing, fourth edition, Helmut Kopka, Patrick W. Daly, 2004
3	Latex Tutorial Jeff Clark, Revised February 26,2002
4	Latex in 24 hours- Apractical guide for Scientific Writing, Dilip Datta.
5	George Gratzer, More Math Into LATEX, 4th Edition, Springer Science (2007).
Refere	nce Books:
1	Peter Flynn, A beginner"s introduction to typesetting with
2	LATEX, Silmaril Consultants, Textual Therapy Division, 2003
	Frank Mittelbach, Michel Goossens, The LaTex Companion, Second Edition, Addison-
3	Wesley, 2004
4	Firuza Karmali (Aibara) – A short introduction to LaTeX.
5	George Gratzer- Practical Latex, Springer Science
Web re	esources:
1	https://www.latex-tutorial.com/tutorials/
2	https://www.latex-tutorial.com/
3	http://www.tug.org.in/tutorials.html

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	3	2	3	2	2
CO2	2	3	3	3	3	3	2	2	3	2	3
CO3	3	3	3	2	3	3	3	2	3	2	2
CO4	2	3	3	2	3	3	2	2	3	2	2
CO5	3	3	2	3	3	3	3	2	3	2	3
Total	13	15	14	12	15	15	13	10	15	10	12
Average	2.6	3	2.8	2.4	3	3	2.6	2	3	2	2.4

1st YEAR: SECOND SEMESTER

										Mark	S	
Cours Code	e	Course Name	Category	L	Τ	Р	S	Credits	Hours	CIA	External	Total
24UM	AC21	Advanced Algebra	Core course 4	3	1	0	1	4	5	25	75	100
	Learning Objectives											
LO1	To Know the concepts on Extension Fields											
LO2	To Acquire Knowledge on Roots of Polynomials											
LO3	To Gain the knowledge on Elements of Galois theory											
LO4	To Understand the concept of finite division rings											
LO5	To Develop the concepts on Solvability by radicals											
Unit			Conte	ent							H	Iours
1		nsion fields–Transcendence oter 5: Sections 5.1and 5.2	of e.									15
2		s of Polynomials. –More abo pter 5 : Sections 5.3 and 5.5										15
3		ents of Galois theory. oter 5: Section 5.6										15
4		e fields- Wedderburn's theoreter 7: Sections 7.1 and 7.2					ngs.					15
5	Four- Chap Theo	ability by radicals - A theore -Square theorem. oter 5: Section 5.7 (Exclue orem 5.7.1) oter 7: Sections 7.3 and 7.4	de Lemma							and the		15

СО	Course Outcomes
CO1	Learn the fundamental concepts of Extension fields
CO2	Develop the concepts of splitting field for a given roots of polynomial.
CO3	Gain the knowledge and write proofs using the concepts of Galois Theory.
CO4	Understand the concept of finite division rings.

CO5	Demonstrate and Understand the use of solvability by radicals
Textbo	oks:
1	I.N.Herstein, Topics in Algebra (II Edition) Wiley Eastern Limited, NewDelhi, 1999.
Refere	nce Books:
1	M.Artin, Algebra, Prentice Hall of India, 1991.
2	P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)
3	I.S.Luther and I.B.S.Passi, Algebra, Vol. I–Groups(1996); Vol.II Rings, Narosa Publishing House, NewDelhi, 1999
4	D.S.Malik, J.N.Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), NewYork.1997
5	N.Jacobson, Basic Algebra, Vol.I & II Hindustan Publishing Company, New Delhi.
Web re	esources:
1	http://mathforum.org//
2	http://ocw.mit.edu/ocwweb/Mathematics//
3	http://www.algebra.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	3	3	3	3	3	3	2	2
CO2	2	2	3	3	3	3	2	3	3	2	2
CO3	3	3	3	2	3	3	3	3	3	2	3
CO4	2	2	3	3	3	3	2	3	3	2	2
CO5	3	3	3	3	3	3	3	3	3	2	3
Total	13	12	15	14	15	15	13	15	15	10	12
Average	2.6	2.4	3	2.8	3	3	2.6	3	3	2	2.4

1st YEAR: SECOND SEMESTER

										Mark	KS	
Cours Code	e	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PMA	AC22	Real Analysis II	Core course 5	3	1	0	1	4	5	25	75	100
			Learning ()bjec	tives	5						
LO1	To w	ork on Measurable function	ns									
LO2	To develop the concept of integration on Riemann											
LO3	Tou	pdate the basic concepts of	on Fourier Se	eries a	and I	Fouri	ier Ir	ntegra	als			
LO4		now about Matrix function	118									
LO5	To a	nalyze Implicit functions										
Unit			Con	tent								Hours
1	Measure on the Real line - Lebesgue Outer Measure - Measurable sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability Chapter -2 Sections 2.1 to 2.5											15
2	funct	gration of Functions of a tions- The General Integra pter-3 Sections 3.1, 3.2 a	al- Riemann		-				-	ive		15
3	funct relat: Riesz trigo Integ Riem Four Cha		st approxima system-Prop e convergen Riemann - centation for em - Sufficie oint–Cesaro 11.13	ation- erties ace an Lebe the j ent co suma	The of nd ro sgue partia ondit ibilit	Four Fou eprese Le al su tions y of	rier s rier senta mma ims for Four	tion tion a - ' of Fo con rier s	s of a fficier probl The I purier vergen eries.	function hts- The ems fo Dirichle series hce of a	n r tt a	15
4	Chapter 11: Sections 11.1 to 11.13Multivariable Differential Calculus-Introduction-The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - Taylor's theorem for functions of R ⁿ to R ¹ Chapter 12: Sections 12:1 to 12:11 and 12:14										15	
5	Impl Jacol theor prob	Inneriors of R ² to R ² Chapter12: Sections 12.1 to 12.11 and 12.14 Implicit Functions and Extremum Problems: Functions with non-zero Jacobian determinants—The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables- Extremum problems with side conditions. Chapter13: Sections 13.1to 13.7										15

CO	Course Outcomes								
CO1	Know about measurable functions								
CO2	Analyze the integration functions on Riemann								
CO3	Understand and describe the basic concepts o Fourier series and Fourier integrals with respect to orthogonal system.								
CO4	Formulate and evaluate Differentiable functions and matrix in linear form								
CO5	Know about implicit functions and extremum real valued functions								
Textbo	oks:								
1	G. De Barra, Measure Theory and Integration, Wiley Eastern Ltd., New Delhi, 1981.(for Units 1 and 2)								
2	Tom M.Apostol : Mathematical Analysis, 2nd Edition, Narosa Publishing House, 1977. (for Units 3, 4 and 5)								
Refere	nce Books:								
1	Burkill, J.C. The Lebesgue Integral, Cambridge University Press, 1951.								
2	Munroe, M.E, Measure and Integration.Addison-Wesley,Mass.1971.								
3	Roydon,H.L .Real Analysis, Macmillan Pub. Company, NewYork,1988.								
4	Rudin, W. Principles of Mathematical Analysis, Mc Graw HilL Company, NewYork, 1979								
5	Malik,S.C. and Savita Arora. Mathematical Analysis, Wiley Eastern Limited.NewDelhi,1991.								
Web re	sources:								
1	http://mathforum.org//								
2	http://ocw.mit.edu/ocwweb/Mathematics//								
3	www.opensource.org//								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	3	2	3	2	3	2
CO2	2	3	3	3	3	2	2	3	2	3	3
CO3	3	3	2	3	3	3	2	3	2	3	2
CO4	2	3	2	3	3	2	2	3	2	3	2
CO5	3	2	3	3	3	3	2	3	2	2	3
Total	13	14	12	15	15	13	10	15	10	14	12
Average	2.6	2.8	2.4	3	3	2.6	2	3	2	2.8	2.4

1st YEAR: SECOND SEMESTER

										Mark	KS	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PM	AC23	Partial Differential Equation	Core course 6	2	1	1	1	3	5	25	75	100
		L	earning O	bjec	tives	5						
LO1	Understand the theory and methods of First order Partial Differential Equations (PI											DEs)
	Get F	Knowledge to solve Second	order PDF									
LO2												
LO3	Unde	erstand the concepts of ellipt	tic differen	tial e	equat	tions						
LO4	Enric	h the knowledge about para	bolic diffe	renti	al ec	quati	ons					
LO5	Deve	lop Knowledge about the hy	yperbolic d	liffer	entia	al eq	uatio	ons				
Unit	Content											Hours
1	of first order equations– Charpit's Method. Chapter 0: Sections 0.4 – 0.6, 0.8 – 0.11 (Exclude 0.11.1)									15		
2	 Fundamental Concepts Introduction–classification of second order PDE –canonical forms Adjoint operators. Chapter1:Sections1.1-1.4 										15	
3	Elliptic Differential Equations Derivation of Laplace and Poisson equations – Boundary value problem – Separation of variables – Dirichlet's and Newmann problems for a rectangle – Solution of Laplace equation in spherical coordinates.										15	
4	 Chapter 2: Sections 2.1-2.2,2.5 -2.7, 2.12 Parabolic Differential Equations Formation and elementary solution of diffusion equation with boundary conditions- Dirac Delta function – Separation of variable method - Solution of diffusion equation in spherical coordinates. Chapter 3: Sections 3.1, 3.3 - 3.5,3.7 									15		
5	 Chapter 3: Sections 3.1, 3.3 - 3.5,3.7 Hyperbolic Differential Equations Occurrence of the Wave equation - Derivation and Solution of 1-D wave equation by canonical reduction– Initial Value Problem; D'Alembert solution – IVP and BVP for 2-D wave equation – Periodic solution for 1-D wave equation in spherical coordinates systems –Uniqueness of the solution for 1-D wave equation– Duhamel's principle. Chapter 4: Sections 4.1 to 4.4,4.7,4.9,4.11- 4.12 										and 1 in	15

СО	Course Outcomes
CO1	Analyze the methods for first order PDE
CO2	Understand the fundamentals of second order PDE
CO3	Develop knowledge on the elliptical differential equations
CO4	Implement the knowledge to solve the parabolic differential equations
CO5	Model and solve the hyperbolic differential equations
Textbo	oks:
1	K.Sankara Rao, Introduction to Partial differential equations (Third edition), Prentice Hal of India Ltd., New Delhi, 2016.
Referen	nce Books:
1	R. Dennemeyer, Introduction to Partial differential equations and boundary value problems, Mc Graw Hill, NewYork, 1968
2	Paul Duchateau Dacid W. Zachmann, Partial Differential Equations, Tata McGraw-Hill Publishing Company Limited, New Delhi
3	M.D.Raisinghania, Advanced differential equations, S. Chand & Company Ltd. New Delhi, 2001.
4	R.C. Mc Owen, Partial differential equations, 2 nd edition, Pearson education, New Delhi,2005
5	A.K.Nandakumaran, P.S.Datti, Partial Differential Equations Classical Theory with a Modern Touch, Cambridge University Press.
Web re	sources:
1	https://nptel.ac.in/courses/111103021/
2	onlinecourses.nptel.ac.in>noc21_ma18//
3	onlinecourses.nptel.ac.in>noc22_ma28
4	onlinecourses.nptel.ac.in>noc21_ma33

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	3	2	3	2	2
CO2	2	3	3	3	3	3	2	2	3	2	3
CO3	3	3	3	2	3	3	3	2	3	2	2
CO4	2	3	3	2	3	3	2	2	3	2	2
CO5	3	3	2	3	3	3	3	2	3	2	3
Total	13	15	14	12	15	15	13	10	15	10	12
Average	2.6	3	2.8	2.4	3	3	2.6	2	3	2	2.4

1st YEAR: SECOND SEMESTER

										Mark	s	
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PMA	AC24	Difference Equation	Core course 7	2	1	1	1	3	5	25	7:	5 100
		L	earning O	bjec	tives	5						
LO1	Diffe	rovide basic knowledge abore rence equations		retiza	tion	proc	cess,	the	discre	te versi	on of	
LO2	To u	nderstand the Linear Periodi	c systems.									
LO3	To de	evelop the student's ability t	o solve dif	ferer	nce e	quat	ions	usin	g Z-tr	ansform	ıs	
LO4	To obtain knowledge on Oscillation Theory											
LO5	To articulate asymptotic behavior of solutions of difference equations.											
Unit	Content											Hours
1	Linear Difference Equations of Higher Order: Difference calculus-General Theory of Linear Difference Equations- Linear Homogeneous Equations with Constant coefficients–Non-homogeneous Equations: Method of Undetermined Coefficients, the method of variation of constants-Limiting behavior of Solutions.									15		
2	Chapter 2: Sections 2.1 to 2.5System of Linear Difference Equations: Autonomous Systems- The BasicTheory-The Jordan form-Linear periodic systems.Chapter 3: Sections 3.1 to 3.4										15	
3	The Z-Transform Method : Definitions and examples, Properties of Z- transform-The Inverse Z-transform and Solutions, Difference Equations: Power series method, partial fraction method, the inverse integral method-Volterra difference equation of convolution typeChapter 5: Sections 5.1 to 5.3							er	15			
4	Oscillation Theory: Three-term difference Equations–Self-Adjoint-Second Order Equations-Nonlinear Difference Equations. Chapter 7 : Sections 7.1 to 7.3									15		
5	Poine Diffe	nptotic Behavior of Diffe care's Theorem - Asymp erence Equations - Second C pter 8 : Sections 8.1 to 8.5	ototically	Diag	gonal	l Sy	ster	-	-			15

СО	Course Outcomes
CO1	Solve problems on Linear Difference Equations of Higher order.
CO2	Understand the system of Linear Periodic systems.
CO3	Apply Z-transform techniques in Difference equations.
CO4	Describe on Oscillation Theory.
CO5	Work on Asymptotic Behavior of Difference Equation.
Textbo	oks:
1	Saber N. Elaydi, An Introduction to Difference Equations, Third Edition, Springer Verlag, New York, 2005 (First Indian Reprint 2008).
Refere	nce Books:
1	Ronald E. Mickens, Difference Equations Theory, Applications and Advanced Topics, Third Edition, CRC Press, NewYork, 2015
2	R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, 1999.
3	S. Goldberg, Introduction to Difference Equations, Dover Publications, 1986
4	V.Lakshmikantham and Trigiante, Theory of Difference Equations Numerical Methods and Applications, Second Edition, Academic Press, NewYork, 1988.
5	Walter G.Kelly, Allan C.Peterson, Difference Equations, An Introduction with
	Applications, Academic Press, NewYork, 2001(First Indian Reprint 2006).
Web re	esources:
1	http://people.math.aau.dk/~matarne/11-mat/notes2011a.pdf//
2	http://pj.freefaculty.org/guides/stat/Math/Difference//
3	http://Equations/DifferenceEquations- guide.pdf//

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	3	3	2	3
CO2	2	3	2	3	3	2	3	2	2	3	2
CO3	3	3	2	3	3	3	2	3	3	2	2
CO4	2	2	3	3	3	2	3	2	2	3	2
CO5	3	2	3	3	2	2	2	3	2	2	3
Total	13	12	13	14	13	11	12	13	12	12	12
Average	2.6	2.4	2.6	2.8	2.6	2.2	2.4	2.6	2.4	2.4	2.4

1st YEAR: SECOND SEMESTER

									Mark	S		
Cours Code	e	Course Name	Category	L	Т	Р	S	Credits	Hours	CIA	External	Total
24PM	AE21	Tensor Analysis and Relativity Theory	Elective course 3	2	1	0	1	3	4	25	75	100
		L	earning O	bjec	tives	5		•				
LO1	To le	earn the system of different	orders in To	enso	r Alg	gebra	ì.					
LO2	To p	rovide the Knowledge of Te	ensor Calcu	lus								
LO3	To U	Inderstand the concept of Co	ovariant of	diffe	erent	iatio	n an	d int	rinsic	differen	tiatior	1.
LO3		ain the knowledge about the										
	0	nalyze the concept of relati	5									
LO5	10 A					L						
Unit	T	or Algebra	Conte	ent								Hours
1	Cont (p,q) Symm and I Chaj	nples-Transformation of ravariant vectors - Tensor – Zero Tensor- Tensor F metric and Skew – symmet inner Multiplication pter I : I.1to I.3 and I.7 pter II : II.1-II.13	s of Secon ield Algebi	d O ra of	rder f Tei	- M	lixed s-Eq	l Ter uality	nsors y of [of Type Fensors	-	12
2	Riem	o <mark>r Calculus</mark> aannian Space-Christoffel S p ter III : III.1 and III.2	ymbols and	l the	ir pro	oper	ties					12
3	Tensor Calculus (Contd.) Covariant Differentiation of Tensors-Riemann-Christoffel Curvature Tensor- Intrinsic Differentiation.									12		
4	Chapter III : III.3 - III.5 Introduction to Relativity Introduction-Maxwell's equation-the Ether theory-the principle of relativity-relativistic kinematics—Events and simultaneity— examples Chapter 7:7.1-7.2									12		
5	Introduction to Relativity(Contd.) Time dilation – longitudinal contradiction-the invariant interval-proper time and proper distance-the world line-example. Addition of velocities- example-the relativistic Doppler effect-example. Chapter 7:7.2											12

СО	Course Outcomes
CO1	Learn the system of different orders in Tensor Algebra
CO2	Gain the knowledge of Tensor Calculus
CO3	To Understand the concept of Covariant of differentiation and intrinsic differentiation.
CO4	Describe the concept of theory of relativity
CO5	Know about relativistic Doppler effect and its applications
Textbo	oks:
1	U.C.De, Absos Ali Shaikh and Joydeep Sengupta, Tensor Calculus, Narosa Publishing House, New Delhi,2004.(For Units 1,2 and 3)
2	Donald T.Greenwood, Classical Dynamics, Dover Publication Inc, NewDelhi, 1985. (For Units 4 and 5)
Refere	nce Books:
1	J.L.Synge and A.Schild, Tensor Calculus, Toronto, 1949.
2	A.S.Eddington. The Mathematical Theory of Relativity, Cambridge University Press, 1930.
3	P.G. Bergman, An Introduction to Theory of Relativity, New York, 1942
4	C.E.Weatherburn, Riemannian Geometry and the Tensor Calculus, Cambridge, 1938.
5	Goldstein, Classical Mechanics(Addition Wesley)
Web re	sources:
1	http://mathforum.org//
2	http://ocw.mit.edu/ocwweb/Mathematics//
3	http://www.opensource.org//
4	http://www.mathpages.com//

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	3	2	3	3	3	3	2	2
CO2	3	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	2	2	2	2	3	2	2
CO4	2	3	2	3	3	3	3	3	2	3	3
CO5	3	2	3	3	2	2	3	2	3	2	2
Total	13	12	14	14	12	13	14	13	14	12	12
Average	2.6	2.4	2.8	2.8	2.4	2.6	2.8	2.6	2.8	2.4	2.4

3	– Strong,	2-	Medium,	1-	Low
---	-----------	----	---------	----	-----