MARUDHAR KESARI JAIN COLLEGE FOR WOMEN,
VANIYAMBADI

PG & RESEARCH DEPARTMENT OF PHYSICS

CLASS 111 BSC PHYSICS
SEEJECT NAME : FUNDAMENTALS OF MICROPROCESSOR-

SUBJECT CODE : FEPH 63A

SYLLABUS

UNIT- 1l

ALP & INSTRUCTION TIMINGS

Assembly language programs-Addition, Subtraction, Multiplication and Division
(8-bit only) - Largest/smallest in an array - Sum of series of a se t- T- State -
Machine cycle - Instruction cycle-Memory read cycle-Memory write cycle -Wait
state - Halt state — Hold state - Delay calculations -Time delay using a single

register.

ASSEMBLY LANGUAGE PROGRAMS

The instruction set of 8085 has been discussed elaborately in Chapters 4 ang 5 o

language programs. For all the programs, the Step,

we can start learning some assembly
orithm. All the programs can be tried oyt usi

required are given in the form of an alg
chapter, the user's address range is agsumeg

microprocessor trainer kits of any make. In this
uted in any other kit with & different adre

to be 2000, to 27FF,. The programs can be exec
range, by simply changing the higher byte of the address. The programs are given in ty,
following headings.

6.1 Addition

6.2 Subtraction

6.3 Multiplication

6.4 Division

6.5 Square and Square root

6.6 Sorting and Searching

6.7 Code Conversion

6.8 Debugging a program

6.1 ADDITION
a) 8-Bit Addition

(Method 1:-)
reS'J“ i$

Two numbers stered at memory locations 2050, and 2051, are added and the

stored in memory location 2052,

Direct addressing mode instructions like LDA... and STA... are used.

(SEMBLY LANGUAGE PROGRAMS
| o 119
algorith™
t the first num
60 ! Ge ber from the memory location 2050_ to th
- save the first number in B register ” ° Aecumutater
R : the secon
i 3 Get d number from the memory location 2051 t
step 4 Add the numbers in A and B. o e secumuitor
_ .z Storethe result which is |
p— ch is in accumulator |
¢ in the memory | '
oca
sep b ENY: ry location 2052,
oROGRAM
LDA 2050 . T
Q. ;Take the first number to A
MOV B,A : Tr “
;Transfer the number from A into B
. i ' 1AL DO
LD 05 s Tak
A 2051, ;Take the second number to A
u-'\D = '
AT B ;Add the two numbers in A and B
STA 05 : -
2052, :Store the result in memory
HLT :End of program
(Method 2:-)

Two numbers stored at memory locations 2050, and 2051, are added and the result is

stared in memory location 2052,..
s like MOV AM and MOV MA are used.

Register Indirect addressing mode instruction

Algorithm:

Step1: Initialize the memory location 2050, with H
er from the memory location 205

ne. The memory address is 2
tent of the memory locatio

L register.
0, to the accumulator A.

051,..
n 2051,

Step2: Get the first numb
Step 3: Increment the address by O
Step 4:

ep4: Add the numbers in A and the con

Step 5:
p5: Increment the address by one. Now the
t which is in accumulator in th

§ address is 2052,
tep 6: Store the resul e memory location 2052,

Step7: End.

~4

LA

RAM | | i
PRI .initialize the memory With H, reqis,

X1 H,2050,
"] [f 4 &
4 Tln”.r:'((,r , f”':l f]f.’(ff.rfl’j l‘f il hf_ "mr'""}r'{

MOV A, M
.into the accumilator
INX H s Increment the memory address by One
p‘\l“."l‘.l M sAdd the number in A with the augenq
INX H sIncrement the memory address by one
MOV M, A :8tore the result in memory
HLT ;End of program
Example:

Input data: 2050 : 49 (Addend)

2051 : 85 (Augend)

Result: 2052 : CE

b) 8-Bit Addition With Carry
Two numbers stored in memory locations are added and the result is stored in a memory

location. After the addition, if the result is greater than FF , a carry is produced and a '1'is
stored in the next location. If the result is less than FF,,, there is no carry and a ‘0’ is stored.

Algorithm:
Step 1: Get the first number from the memory to the accumulator.

Step 2: Store the first number in B register.

Step 3: Get the second number from the memory to the accumulator.
Step4: Clear C register to store the carry if the result exceeds FF .
Step 5: Add the two numbers.

Step 6: If the result exceeds FF,,, increment the C register by one.
Step 7: Store the sum in memory.

Step 8. Store the carry in memory,

Step 9: End.

LDA 205
MOV B,A
LDA 2051
MVI C,00
ADD B
JNC GOTO
INR C

a0TO: STA 20 52H

C3

Mov A,C
STA 2053,
HLT
Example:
Input data: 2050 :
2051
Sum : 2052

Carry : 2053

4C
01

;Take the first number in A
;Transfer the first number into B
;Take the second number in A
;Clear the C register

;Add the two numbers

;If the result is less than FFH,
;Jump to the location named GOTO
;Else, increment C register
:Store the result in memory
;Move the carry in C to A

;Store the carry in memory

;End of program

(Addend)
(Augend)

6.2 SUBTRACTION

a) 8- Bit Subtraction

Two numbers are stored at memory locations 2050, and 2051 The number stored in
the memory location 2050, is subtracted from the number stored in the memory location
2051, and the result is stored in memory location 2052,

Direct addressing mode instructions like LDA_ and STA. .. are used.

Algorithm:

Step 1: Get the first number from memory to the accumulator.

tep 2: Store the first number in B register.

Step 3: Get the second number from memory to the accumulator.
Step 4. Subtract the first number from the second number.
Step 5: Store the difference in the memory.

Step6: Eng.

PROGRAM:

munber (subt rahend) in A

LDA 20 "‘\.‘__ * Tavker

MOV B, A Transfer the first number into B

LDA 20 ke the second number (minuend)in A
UR B ssubtract the tirst number from

o
O

the second numbetr

STA 1052 Store the difference in memory
HLT JEnd of program
Example:
Input data: 2050 : 49 (Subtrahend)
2051 : 85 (Minuend)

Difference: 2052 : 3C

NOTE:
In the example given, we have subtracted a smaller number from a bigger number and

obtained a positive result i.e. 85, - 49, = 3C,. On the other hand, if we subtract the bigger
number from the smaller number, we will get a negative result i.e. (-3C),. This negative
result will be stored in 2's complement form in the memory as C4,.. In this case, a borrow

occurs which is indicated by setting carry fiag. In the next program, we get the difference

as well as the borrow.

b) 8-Bit Subtraction with Borrow

It is similar to add with carry program. A borrow (carry flag) occurs when a bigger number

is subtracted from a smaller number.

Algorithm:
Step 1: Get the first number (subtrahend) from the memory to the accumulator.

Step 2: Store the first number in B register.

p.SSEMBLY LANGUAGE PROGRAMS
,._--"""—_—___

127

Step 3 Get the second number (minuend) from the memory to the accumulator

stap 4: Clear C register to store the borrow, if the first number IS bigger than the
second number.

Step 5 Subtract the subtrahend from the minuend.

Step B If the first number is bigger than the second number, a borrow is produced which
is saved in C register.

siep7: Store the difference in memory.

step 8. Store the borrow in memory.

Step 9: End.
PROGRAM:
LDA 2050, ;Take the subtrahend in A
MOV B,A ;Transfer the subtrahend into B
LDA 2051, ;Take the minuend in A
MVI CJ,DOH ;Clear the C register
SUB B ;Subtract the subtrahend from the
;minuend
JNC GOTO ;If there is no borrow, jump
;to the location named GOTO
INR C ;Else, increment C register to

;Store the borrow

GOTO:sTA 2052H ;Store the difference in memory

MOV A,cC :Move the borrow in C to A
STA 2{}53H :Store the borrow in memory
HLT

:End of program

6.3 MULTIPLICATION

a) B-bit multiplication (16 bit result)
In this program, two B-bil numbers are multiplied using repeated addition method and :

16-bit resull is obtained For example, 10 multiply 1F,, with 26, , 1F is added repeated|,

26 times o 26 1 added 1F, times, The accumulator is initially cleared to use it for the

addition procedure. When the partial sum exceeds FF,, a carry is produced. A counter is

inthalized with zero and 18 incremented by one, every time a carry is produced. The

Secumulator holds the lower byte of the product and the counter register holds the higher

hyte of the product

Algorithm:
Step 1 Get the multiplier from the memory to the accumulator.
Step 2 Transfer the multiplier to B register.

Step 3 Get the multiplicand from the memory to the accumulator.

Step 4 Transfer the multiplicand to C register.

Step 5 Initialize accumulator to zero.

Step 6. Clear the D register for storing the carry.

Step 70 Add multiplicand in C register to accumulator.

Step 8 I the value in accumulator exceeds FF, , increment D register by one.
Step 9 Decrement the multiplier in B by one.

slep 1001 the value in B register is not equal to zero, then go to Step 7.

step 1101 the value in B register becomes zero. store the lower byte of the result in the

accumulator to memory.,
Slep 120 Store the higher byte of the result in D register in memory.

Step 13 End,

' LY LA
ASSEMBLY L/

NGUAGE PROGRAMS

133

pROGRAM:

o —

GOTO:

LDA

MOV

LDA

MOV

XRA

MOV

ADD

INR

DCR

JNZ

STA

MOV

STA

HLT

2050,

HERE

;Take the multiplier to accumulator

;Transfer the multiplier to B register

;Take the multiplicand to accumulator

;Transfer the multiplicand to

;C register

;Clear the accumulator

:Clear D register to store the carry

:Add the contents of A and C registers

;If there is no carry, then go to the

;location named GOTO

;Else, increment D register

:Decrement the B register by one

;If the value in B register 1s not

;equal to zero, then jump to the

:location named HERE

;Gtore the lower pyte of produc

;Transfer the hi
:Store the higher

;End of prograin

gher byte (O accumulator

byte in memory

t 1n memory

6.4 DIVISION

2 8-Bit Division
Here we divide an 8-bit number by another 8-bit number by repeated subtraction method.
The divisor is subtracted from the dividend repeatedly till the dividend becomes less

than the divisor. For each subtraction, a counter is incremented by one. The program

generates both the quotient and the remainder.

Algorithm:
Step 1: Get the divisor from the memory to the accumulator.

Step 2: Transfer the divisor to B register.

Step 3: Get the dividend from the memory to the accumulator.

Step

2
3
Slep 4: Initialize C register with -1 i.e. FF, to store the quotient.
S: Increment the C register content by one.

6

Step 6: Subtract the divisor in B from the dividend in A.

FUNDAMENTALS OF MICROPROCESSOR - gqe,
—%

b=
(54}

visor, then go to step 5.

If the ¢ vidend is greater than the di
ts of A and B to get the

an the divisor, add the conten

=]

tep
Step 8: Ifthe dividend is less th
remainder.

Step 9 Store the remainder in memory.
Step 10: Store the quotient in memory.

Step 11: End

PROGRAM:
) :Take the divisor LO accumulator

MOV B .Transfer the divisor to B register

2051 :Take the dividend to accumulator

;Initialize C register to -1

I-II
F|J

.Increment C register content by one

-

I
i
y
It
]

;Subtract the divisor from the

i
1
L

;dividend

;If the dividend is greater than the

i

3

I
gl
s |
™

;divisor, then go to the location

;named HERE

;Add the contents of A and B to get

]
(&)
L

a8

;the remainder

L1

e
(g
C_"\
wn
ot

;Store the remainder in memory

MO C - - » ;
o E,C ;Transfer the quotient in C register

sto accumulator

9}
3
e
B
[
|
f_‘c

52, ;Store the quotient in memory

;End of program

147

£.amo®e 5050 05 (Divisor)
S " dﬂit Gy
npd! 051 : 2E (Dividend)
2052 09 (Quotient)
Resul |
2053 : 01 (Remainder)
yision by shift and subtract method (16-bit by 8-bit)
bl D . .)
st 38 multiplication 1S done by shift and add method, division can be performed by
ot and subtract method. The procedure is very much similar to the division we perform

in g pen and paPer
We take the most significant eight bits of the dividend and subtract the eight bit divisor
f the quotient is set to 1. Otherwise, the quotient is taken as

i thereé is no bOITOW, the bit 0
. Tne dividend IS shifted left before we do the next subtraction. The dividend and the

quotient ghare @ 16-bit register. During each shift, the LSB position falls vacant and in this

ssition, the quotient part is store
ssed to keep track of the subtractions.

d. The subtraction is done eight times and a counter is

Algorithm:
oad HL register pair with the 16-bit dividend from the memory.

siep 10 L
Siep 2 Get the 8-bit divisor from the memory into the accumulator.

2
Step 3. Save the divisor in B register.
4

- Load C register with 08,, ie. Cregister acts as @ counter indicating the number of

Step
bits in the divisor.

Shift dividend and quotient by
Bring the most significant bits in H to A.
Subtract the divisor.

Step 8: If there is a borrow, go to step 10-

Step 9: If there is no borrow, take A back to H and i
Step 10: Decrement the count in C register by one.

Step one bit position using DAD H.

Step
Step

ncrement L register.

Step 11:
Step 12;

Step 13;

If the count is not equal to zero, 9o 10 step 5.
The H register contains the remainder and

HL contents in memory.
End.

L register contains the quotient. Store

=
(5 %)

FUNDAMENTALS OF MICROPROCESSQR . A

PROGRAM:

Example:

Input data :

Result :

L L]
)

[

SAER e divideri HL register

",- - s vigsor 11 accumulator

; " ve the viso egister

) -.-1 . with a count ol 0§

\"‘ e o L oL I

i «ok:ft HL left once

A, H rake the most significant eight bits
sin H to A

B ;Subtract the divisol

LOOPL ;If a borrow is produced, go to locatig
;named LOOPI

H,A ;If no borrow, take the subtracted
;result back to H

L sPut a 1 in LSB position as part
;of the quotient

€ ;Decrement the counter

LOOP2 ;If count 1s not zero, continue

;in LOOP2

L |
wn
Lad

;Store the remainder and quotient in

;memory

;End

2050
2051
2052

:F7
102
i

(Dividend)
(Divisor)
2053 : 11
2054 :0B

(Quotient)

(Remainder)

6.6 SORTING AND SEARCHING

a) Largest / smallest number in an array

Let us load N bytes in successive memory locations. The bytes in two successive
locations are compared. The larger number is always moved up the array. The smaller
number is not destroyed but moved to a lower memory location. If the smaller numbers also
are retained. then it will be convenient to modify this program to arrange a set of bytes in
ascending order also. When there are N bytes, there will (N-1) comparisons. A register is
loaded with (N-1) to act as a counter. After (N-1) comparisons, the largest number is available

at the highest memory address.

After the comparison, instead of moving the bigger number up the array, if we move
the smaller number, then the same procedure can be used to pick up the smallest number

in the array,

The flow chart for picking the largest number in an array is given in Fig (6.2)

Algorithm:

Step 1. Load ‘N’ bytes in memory whose starting address is in HL register pair.

Sep 2: Load (N-1) in C register, to be used as a counter.

58

FUNDPAMENTALb U VI T nULtSSQ’R

arting adderss

Initialize memory with st
~1)forNdata |

Initialize counter with (N

Take a number from memary to A

r

Increment memory pointer

L4

Take the next number from next address to B

b

Compare A and B

Is No
A>B?

Yes

Swap memoary contents 1

3

Decrement byte counter +

Is
Byte counter C= 0 7

Fig (6.2) Flow chart for Picking up the largest number

AGSEMBLY LANS JUAGE PROGRAMS

- e ————

159

gtop 4 Move the first data from memaory to accumulator
gtop 4 Increment memory address in ML |
gtop & Move the second data from memory to B register

grop 6 Compare the data in A register with the data in B.regislar

gop T If data in A register is smaller then go to step 9. ;

qop 8 Else, 'swap’the first data with the second data stored in memo
gep 9 Decrement count register C by one. !

step 10: | C register content is not equal to zero, go to step 3
step 11 End. '

Assuming there are 10 unsigned 8-bit numbers (i.e. the count is 0A, - 1=09) in the
array, the program for largest number in an array can be written as follows.

PROGRAM:

LX1 H,2050, ;Initialize HL register pair with the

:starting address of the memory which

;stores 10 numbers

MVI €y 99, :Load C register with required count
LOOP2 : MOV AM :Move the first number to accumulator
INX ol ;Increment the memory address by one
MOV B,M ;Move the gecond number to B register
CMP B ;Compare the data in A and B registers
JC LOOP1 ;If data in A js smaller, then leave the

;smaller number in 1its position and

;continue further comparisons

MOV M, A :Else, rgwap’ first data and second
DCX H ;data stored in memory
MOV ~ M,B
INX H ;Restore memory address
LOOP1: DCR C SIf comparisons are not over
JNZ LOOP2 ;continué in LOOPZ

i I rogram.
HLT ;End of P

160 FUNDAMENTALS OF MICROPROCESSOR aw:‘
—
Example: |
input data : 2050 :2A Result : 2050 :2A ll
2051 :FF 2051 :03 !
2052 :03 2052 :E6 '!
2053 :E6 2053 :32 ‘
2054 :32 2054 :1C
2055 :1C 2055 :D1
2056 : D1 2056 :86
2057 .86 2057 : A0
2058 : A0 2058 :2F
2059 :2F 2059 :FF

To pick up the smallest in the array, after the compare instruction, we have to use the |

instruction JNC instead of JC.

8085 INSTRUCTION TIMINGS

The primary task of a microprocessor is to execute programs. These programg Cong,,
of a sequence of instructions stored in the memory. The processor fetches the imitructmpIwg
one by one from the memory and executes them. This operation involves a combinatinnm
reading the memory, writing into the memory, reading an input port or writing into the Oty
port. In this Chapter, we will discuss how an instruction is executed by the 8085 and Wha

happens during each clock cycle. This Chapter covers the following topics.

7.1 Introduction

7.2 Memory Read cycle

7.3 Memory Write cycle

7.4 Wait States

7.5 Halt State

7.6 Hold State

7.7 Timing diagrams for some instructions

7.8 Delay calculations

7.1 INTRODUCTION

We have already mentioned that the 8085 microprocessoi' is connected to a crystal of
frequency 6.144 MHz (Chapter 3). The crystal frequency is divided by two internally and the
operating frequency of the 8085 system is 3.072 MHz. This gives a time period of 0.32
microseconds. In other words, the system clock frequency is 3.072 MHz and the clock period
s 0.325 microseconds. Each step of operation in the processor is synchronized to the clock
The basic operations like memory read, memory write, etc., take three clock periods (o cloct
pulses). To go little deeper into this chapter, let us define the following terms.

i) T-state is defined as one subdivision of the operation performed in one clock Peﬂod'
5 5 _ late
These subdivisions are internal states synchronized with the system clock and each L

is precisely equal to one clock period. The terms T-state and clock period are ofte" 2

synonymously.

[
i machine cycle is defined as the time required to complete one operation of
r acknowledgin —
memo ory. 1/O, 0 ging an external request. This cycle may consist of three to si
x
Jates. FO' some instructions, instruction cycle and machine cycle are the same which
whic

1eaﬂ5 that the instruction takes only one machine cycle. Eg: MOV B,A

iii) Instruction cycle is defined as the time required to complete the execution of an
pstruction: The 8085 instruction cycle consists of one to five machine cycles. For example

the instruction MOV B A takes only one machine cycle whereas the CALL instruction takes

ve machine cycles.

-2 MEMORY READ CYCLE .

The sequence of operations that takes place when the processor reads a memory
location is the memory read WC|8-_BY drawing a timing diagram, we can understand Now
e address, data and control buses of 8085 behave during the read cycle.

The 8085 processor reads the memory in 3 clock cycles or 3 T- states That is, 8085

takes 0.925 microseconds to read a memory location. During the 3T states, the status of

orﬁ‘qi busas can be represented in a timing diagram. The 3 T-states
reacl cycle is one of the machine cycles

en in Fig (7.1).

the address, data and €
are represented as T, T and Ty \The memory
performed by 8085, The timing diagram of memory read cycle is giv

The sequence of operations performed by 8085 when it reads a memory location is listed

below.

+ In the beginning of each machine cycle, i.e., at the beginning of T,. 8085 sends out a
to be read (The higher order address

16-bit address of the memory location that is
ddress lines Ay A and remains

A,- A, directly comes out on the higher order a

unchanged for the entire read cycle. ’Trhe lower order address A-A, is sent along the

multiplexed address/data lines AD,-AD;

5 jssues the Address Latch Enable
D,-D,are separated
Fig (3.4). The lower

as are used for data

* To demutiplex the multiplexed AD, -AD, lines, 808

(ALE) pulse during T,. fThe lower order address A,-A, and data
using an octal iatchfand the ALE pulse as explained in Chapter 3
order address is separated by the end of T,. Now the AD,-AD, lin

transfer.

oo St \ B
184 \Eﬁﬂa
M Read cycle
et ;—aﬂr—* [T,
T, 2
CLK _/_'\—/_\—__/—_
ALA :X High-Order Memory Address
AD,- AD, | -< Low-Drdal}- - - 1 c&r:?nrgfyaf) ==
Memory Address
ALE " \
Igfsﬁ] |Oﬂi=0. §,=1,8,=0 Memory Read
. \ /
Fig (7.1) Timing Diagram of Memory Read Cycle

Toread the memory, I0/M = 0 during T, and continues to remain in 0 state till the end
of the read cycl&;.

| Since address and data are separated using the ALE pulse during T,, the processor
makes RD = 0, only during T, indicating a read operation.f The signal RD goes back
to 1 state in the middle of T..) -

¢ Combining IO/M and RD in an OR gate, a memory read signal MEMR can be generated
and used specifically to read memory devicesi Refer Chapter 3, Fig (3.5). The MEMR
signal is available from the middie of T,

® With the address sent by 8085, using external logic circuit, the memory device must

be selected| Then, when the MEMR signal is applied to the memory device, the
contents of the memory location that is addressed is read. The data available on the
data lines of the memory chip is taken through the data bus to the processor.

RUCTION TIMINGS
085 INSTES

185

, The data bus (AD;-AD;) has the memory contents from the middle of T, tg the middle
?
of T, The address A-A, are separated by the end of T, The AD,- AD, lines which
T

now act as the data bus, receive the data only in the middle of i

In between, during

this small time gap, AD - AD, lines are undefined. This period is also shown in the

timing diagram, given in Fig (7.1). Now the memory read cycle is complete.

13 MEMORY WRITE CYCLE

The sequence of operations that takes place when the processor writes a data into a

memory is the memory write cycle.

The memory write cycle is identical to the memory read cycle with small changes. The
memory write cycle is shown in Fig (7.2).

Memory Write cycle

|

8, 0.8, =1

Memory Wrile

—

Fig (7.2) Timing Diagram of Memory Write Cycle

#
I UNDAMENT ALS OF MICROPROCESSOR _B% ‘
- e —-'—__—___\\

186 .

cle changes in the write cycle are .

Compared to read ¢y
- 0, In the middle of T,

operation, the processorl makes WR -

Since it is a write
, memory write MEMW sign

Combining 10/M and WR. al can be generated and yg,

to write in @ memory device.

ritten into the memory comes from the processor and there is p,

a The data to be W
ess. The data is placed on AD-Ap

he separation of lower order addr

time lag after t
estartof T, itself. /
—

as soon as the address, A-A,is separated, at th

Note:
The /O read machine cycle is similar

\O/M = 1 for /O read machine cycle. Also the
write machine cycle, again the only change is, IO/M = 1.

to memory read machine cycle. The only changeis

/O write machine cycle is similar to memory

7.4 WAIT STATES
In 8085, pin 35 is called READY pin. This pin is provided in 8085 to purposely slow

down the microprocessor when the processor has to work with slower memory or periphera

devices. If the READY input of the 8085 is made low at the right time, then the processo
enters a 'wait state’, T, after T, of the current machine cycle. Fig (7.3a) and (7.3b) shows
the timing waveforms for 8085 read machine cycle without and with a wait state respectively.
The processor checks the ready input during T,. If the READY input is high, (Fig 7.3a). the
processor proceeds directly to T, to complete the read machine cycle in 3 T-states. On ¢
other hand, if the READY input is low during T,, (Fig 7.3b), then a wait state is introduced. !
READY goes high during the wait state, then after the wait state, 8088 continues with T;¢

th i ; .
e machine cycle. With one wait state, the memory read operation takes 4 T-states.

If READY is sti ‘ '
DY is still low, during the wait state, then one more wait state is introduced: T

wait states continue to be inserted as long as READY is low

During the wait state, the contents of the address bus, data bus and control bus are gl
held constant.

mMemory Read cycle

Momory Read cycle

AA, x High-Order Memory Address x High-Order Memory Address
"
AD,- AD, —— Memory = Low - Order } — — -{ Contents of Memory } = o
Memory Address

10 1M)(=

CS} 10M =0, S, = 1,5,=0 Memory Read 10/M =0, s,= 1.5,=0 Memory Read
\ high high

READY \ \- b

-

Fig (7.3a) Memory Read Cycle

without wait state

Fig (7.3b) Memory Read Cycle

with one wait state

-ourtesy

el

FUNDAMENTALS OF MICRDPROCESSOR - 808

ol

The READY pin can be given an active low pulse during T, using two D f“p‘ﬂops

connected as shown in Fig (9.4) to insert one wait state.

clear
5V ——»p. a » 0, Q
D Flip - Flop 1 D Flip - Flop 2

ALE ——— ™ cik 8085 CLK P CLK |
OUTPUT

*| To READY input of 8085

By
|
(=]

Fig (7.4) Generation of one wait state

The two flip-flops used are positive edge triggered flip-flops (IC 7474). That is, the
D input is transferred to the output during the positive edge of the applied clock pulse. The
ALE pulse is applied as clock to the first D flip-flop, F/F,. Since the D, input is in 1 state
(high), on applying the ALE pulse, the output Q, goes high. This Q, output is given as input
D, to the second flip-flop, FIF,. The clock out of 8085 is used as the clock for the second
flip-flop. At the next clock pulse, the output Q, now goes high and 62 goes low.
This 52 output is connected to the READY pin of 8085 and also to the reset input of the first
flip-flop. The READY pin goes low during T, and hence 8085 enters a wait state. When @
goes low, it also resets the first flip-flop and the output Q, goes low. Therefore, during T,
when 8085 is in the wait state, the output Q, goes low and az goes high. The READY pin
also goes high and 8085 enters T, after only one wait state. Since the ALE pulse is used,
one wait state will be introduced for each machine cycle.

A monostable multivibrator, which produces a single pulse of finite duration, can also
be used to give a low pulse to the READY input. The RD or WR signal may be used 10
trigger the monostable multivibrator to introduce a wait state for each read or write machi®
cycle. If wait state is to be inserted only for a particular device that is connected to 8085
then the chip select or chip enable signal developed during the interface can be used
trigger the monostable multivibrator. This avoids wait states being introduced for eac”

machine cycle.

ﬁOSE)INSTRUL’ sz

5 H ALT STATE
It instruction, HLT is ex ;
when the ha ecuted, the 8085 will enter
a halt state after
T, of

i le. In the halt stat i
qext machiné cyc e, the processor is stopped; th
, the buses are trista
ted.

thé
nly three ways to get out of the halt state;

fmere 8¢ ©

1 Reset 085 by applying an active low input to RESETIN of 8085.

) Make HOLD pin high so that 8085 enters a hold state. But, when the hold input goes

low again, the processor returns to the halt state.

3 Interrupt 8085, by applying an active high signal to one of the interrupt pins. (8085

. Interrupts is discussed in Chapter 10).

76 HOLD STATE

In 8085, pin 39 is called the HOLD pin. The HOLD line is checked by the processor
during the HALT state and T state of a machine cycle. If the HOLD pin is high, the
microprocessor enters a HOLD state and issues @ 'hold acknowledge’ signal through the
HLDA pin (pin 38). After recognizing an active high HOLD signal, the processor suspends

the execution of furthe? machine cycles. The address bus, data bus and control bus go into

high impedance. During the HOLD state, peripheral devices can make use of the three buses
directly. This mode of operation is known as Direct

given in Chapter 12.

to transfer data to or from the memory,
Memory Access (DMA). A brief explanation of DMAis

77 TIMING DIAGRAMS FOR SOME INSTRUCTIONS
n of an instruction by @ microcomputer in general, in

We have mentioned about executio
how the microprocessor 8085 executes

Chapter 2, Sec 2.9. In this section, W€ will discuss

8085 are executed using some combination

diferent types of instructions. Al instructions in

Memory Read ii) Memory Write iii) 11O

of the four machine cycles, namely, i)
Read iv) /0 Write

For all the instructions, the first machine cycle is always a memory read cycle, fetch
efore, the first machine cycle is called as Opcoge f

code from the memory. Ther
op ry write, I/0 read and I/O write machine CYoeg

machine cycle. The memory read, memo "
e cycle in 8085 ta
3 clock cycles or 3 T-states. But, the opcode fetch machine cy Kes 4 T~sla

or 6 T-states. Let us see how some instructions are executed and draw the diagrams ¢
!

these instructions.

a) Timing diagram for MOV B,A instruction:
Let us assume that the machine code of the instruction is stored at location 2015

The memory address and its contents are as shown below.

Instruction Mem Addr, Hex code

MOV B,A 2015 47

Let us also assume that the program counter is ready with the address 2015,
This instruction is completed in one machine cycle itself. The first machine cycle fetches
the hexcode of the instruction from the memory and this cycle of operation is called opcode
fetch. For the instruction MOV B.A | 4 T-states are required. The timing diagram is given
in Fig (7.5).

Sec 7.1. The memory read takes 3 T-states, where as, for the instruction MOV B,A the

opcode fetch takes 4 T-states. The sequence of execution of the instruction is as follows.

P¥te 20, is placed on Ay Ay The lower byte 15, is placed on AD,-AD, which is used 10

carry the address A -A_ only during T,. The higher address lines remain unchanged for theé
first three T-states, T, T,and T,. During T,

The lower address A . oA, are separated using

 the higher order address lines are undefined

words, AD - AD, becomes the data bus. In initial periog of T,, till it receives the data, the
data bus is in undefined state.

RUCTION TIMINGS

3088 INS

191
I M, {Opcode Fetch)
T, 1 *
— — - — - '.__] ;
N
N _/I__/_\I
AA, :X 20, High-Order Memory Address . Unspecified |
Low - Order
AD.- AD, 15,, - - —(47, Opcode } _______

Memory Address

ALE

i

alP

Status 1OM = 0,8, = 1.8, = 1 Opeode
v "o Fetch

Fig (7.5) Timing Diagram of MOV B,A instruction

n, 8085 makes the signal

peration is @ memory read operatio
pcode fetch operation.

s signals S,S, reads 11 indicating 0
he entire machine cycle.

Since the opcode fetch 0
IOM equal to zero. The statu
IOM=0and S.S, =11 remain unchanged for t

in the middle of T, 0 read the memory. For the given

The 8085 makes the RD signal low
e contents of the memory

cted and with RD signal, th

address 2015, the memory is sele
the middle of T,

location, 47, is read. This hexcode falls on the data bus in

de and puts it in the instruction register. After reading

The 8085 now reads the hexco
ade high towards the end of T

th ; ise
e machine code 47,, RD signal IS M
the relevant operation is carried
Now, the instruction cycle

xecute the

ruction is decoded and
egister.
Or, the time taken to €

In the fourth T-state, T,, the inst

0 .
ut. In this case, the contents of A ré
e, taking 4 clock cycles.

gister is copied in BT

fs completed in one machine cycl
instruction MOV B Ais 4T (4 X 0.325 microseconds).

i FUNDAMENTALS OF MICROPROCESSOR, _ e
MOV B.A is a one byte instruction involving 8-bit registers. A number of other qp,, by

instructions like MOV C.D, ADD B, INR D etc., also have only one machine cycle and ,
[

instructions are completed in 4 clock periods

b) Timing diagram for DCX D instruction;
e instruction and it is also executed in one machine e :.
r

!

This instruction is also a one byt
But since the operation involves the register pair DE, 8085 takes 6 clock cycles tg COMpjgy,

the instruction The timing diagram for the instruction DCX D is given in Fig (7.6). As i

previous example, let us assume the instruction is loaded in at the address 2015,

Instruction Mem Addr Hexcode
DCX D 2015 1B
M,(Opcode Fetch) v
. k . L % i % T
L)
A A x 2, High-Order Memory Address x u
g | :
Low - Order 1
AD,-AD, }{ 1, - { 18, Opcode } _______
______ N pp—
Memory Address [
aLe [\ |
10/M ‘
06, J_ S = 05, « 13007 —
| Opcode Fetch
RD
]
1 /
__....-----"""J

Fig (7.6) Timing Diagram of DCX D instruction

We can see that for the first 3 T-states, the timing diagram for MOV BA and DCX D

Lo the same. The instruction MOV B,A, after fetching the machine code completes the

crpera“'?"' in the fourth T-state. The instruction DCX D completes the operation of

*ccrementing the register pair DE by 1 in three clock cycles T,, T, and T
v ' -4 q

puring T Ty and T,, the higher order address bus A -A and the data bus D.-D, are

ndefined The signals I0/M = 0 and 8 S, = 11 continue as it is for the entire machine cycle

of6 7T .states.

The ALE continues to remain low and the RD continues to remain high.
The instruction DCX D is completed in 6 T-states.

¢| Timing Diagram for MVI A,25, instruction:

This is a two byte instruction. When executed, this instruction moves the 8-bit data that
iollows the opcode into the accumulator. In other words, the data to be moved to the
sccumulator is available in the very next memory location following the machine code of the
nstruction. This instruction is executed in two machine cycles and takes 7 T-states. The

first machine cycle is opcode fetch and the second machine cycle is memory read. Let us

assume the instruction is loaded in at the address 2015,

Instruction Mem Addr Hexcode
MVI A,25, 2015 3E
2016 25

Opcode Fetch (4T): This machine cycle is completed in 4 T-states. The explanations

are almost the same as the opcode fetch machine cycle for our first example, MOV B.A

instruction. The sequence of operations are once again repeated.

The 8085 places the contents of the program counter on the address bus. The higher

byte 20, is placed on AA,,. The jower byte 15, 18 placed on AD-AD, W
carry the address A -A, only during T, The higher address lines remain unchanged for the

first three T-states T,,T,and T,. During T,. the higher order address |

hich is used to

ines are unaefined.

5 IND I MUty e oo
808

We can see that for the first 3 T-states, the timing diagram for MOV B A and DCx 0
e the same. The instruction MOV B.A, after fetching the machine code completes the
operation in the fourth T-state. The instruction DCX D completes the operation of

deG,-ementing the register pair DE by 1 in three clock cycles T, T.and T

puring T,. T, and T, the higher order address bus A,-A,, and the data bus D.-D. are

yndefined. The signals lO/M =0 and S S_ = 11 continue as it is for the entire machine cycle
of 6 T-states.

The ALE continues to remain low and the RD continues to remain high.

The instruction DCX D is completed in 6 T-states.

¢) Timing Diagram for MVI A,25, instruction:

This is a two byte instruction. When executed, this instruction moves the 8-bit data that
follows the opcode into the accumulator. In other words, the data to be moved to the
accumulator is available in the very next memory location following the machine code of the
nstruction. This instruction is executed in two machine cycles and takes 7 T-states. The
first machine cycle is opcode fetch and the second machine cycle is memory read. Let us
assume the instruction is loaded in at the address 2015,

Instruction Mem Addr Hexcode
MVI A25, 2015 3E
2016 25

Opcode Fetch (4T): This machine cycle is completed in 4 T-states. The explanations
are almost the same as the opcode fetch machine cycle for our first example, MOV B.A

instruction. The sequence of operations are once again repeated.

The 8085 places the contents of the program counter on the address bus. The higher
byte 20, is placed on A-A,,. The lower byte 15, is placed on AD-AD, which is used to
carry the address A-A, only during T,. The higher address lines remain unchanged for the

first three T-states T, T, and T, During T,, the higher order address lines are unaefined.
0 o8 .

x i 20 High-Ordar p
: " High-Order Memory Address Unapatified x Ly v SMmory Addry,
o x 20, :

\
A |

Low - Order
Low - Order

—

): > i (3E,, Opcode)— “““““ i 16,

Memory Address
Moemory Eu'!-"l'-"SSl

A

——-__--‘-‘ 1
- l Opcode = N _ e~
Status IOM = 0, § =18 =1 I-Petch x oM =0, § 15,=0 |"v!err1::u-l,fp£ac

=

| | M
| .

Fig (7.7) Timing Diagram of MV A,25_ instruction

The lower address A -A, are separated using an address latch and the ALE pulse. For this |

purpose, 8085 issues ALE pulse during T itself. The ALE pulse goes high during T, b

goes back to low state and remains in low state for the remaining three T-
lower order address is Separated, the lines AD,

states. Once the

-AD, are used to transmit data or in other
words, AD,-AD, becomes the data bus. In initj

location, 2015, i.e. 3E,, is read. This hexcode falls on the data bus in the middle of T

e 195

The 8085 now reads the hexcode

} § .
o s . - .

in the fourth T-state, T,, the instruction is decoded and the processor decides that one
; |€.‘ . - -
more machine Cycle IS to be performed to read the dats from the memory and transfer it to

he accumulator. The machine cycle is the memory read machine cycle.

yemory Read (3T): The memory read machine cycle is the same as the memory read
cycle we have explained in Chapter 7, Sec.7.1. Therefore, we can say that 8085 sends the
Jddress 2016, over the address bus, makes I0/M = 0, RD = 0 and reads the contents of
e memory location 2016, The contents of this location which is 25, is transferred to the
srocessor through the data bus. Within the 3 T-states, the data 25_is placed in the

accumulator.
The timing diagram for the instruction MVI A,25,_ is given in Fig (7.7).

d) Timing Diagram for LXI H,2050,, instruction:

This is a three byte instruction. When executed, this instruction transfers the 16-bit data
that follows the opcode into HL register pair. The lower byte, 50,, is transferred to the L register
and the higher byte 20,, is transferred to the H register. This instruction is executed in three
machine cycles and takes 10 T-states. The first machine cycle is opcode fetch (4T) and the

other two are memory read machine cycles (3T + 3T). Let us assume the instruction is loaded

in at the address 2015,

Instruction Mem.Addr Hexcode

LXl H,2050, 2015 21
2016 50
2017 20

In opcode fetch cycle, the 8085 fetches the machine code of the instruction 21, from

- chine cycle, the
the memory location 2015,,. In the fourth clock cycle of this opcode fetch ma y

P i rea
processor decodes the instruction and decides that it has to perform two more memory d

Cycles to read two bytes from successive locations and load them in HL registers.

:

M. (Opcode Felch) ———
———-_.___________________'____

High-Order Memory Address N Unspeciﬁedl 20, High-Order Memory Address 1 20,
T
|

Low - Order Low - Order
- {28 e R o S
}l Memory Address
o/m _ =
= x Status 10 =0, S = 1.8, = 1 Spgede ‘X;IOIM =0,
o

Fetch

=hgh-Order Memory

I

Address

I
s
23

S,=1.8, =0 Memory Read Iu:wﬁ:u. S.;21.8, =0 Memory Read

RD ‘\ / / ' |

Fig (7.8) Timing Diagram of LXI H.2050H instruction

—o) TION TIMINGS

-

17
__ rst memory read cycle, the processor sends the address, 901

~ the . o b, oaned o e
. wich s transferred to L register el
e gecond memory read cycle, the processor sends the addrpss 2007 and

~ the o w AN roady
.» 20, which 18 transferred to H register

. gaia =7
6 <hould remember that in 8085, when a 16-bit number is loaded in the memory. the

e O

 pyte 1S ioaded in the memory location having the lower address and the higher byte i
yded In the memory location having the higher address.

- yming diagram for the instruction is given in Fig (7.8). The instruction L X1 H 2050
mpieted N 3 machine cycles and takes 10 T-states.

. Timing Diagram for STA 2275, instruction:

--.= 15 2 three byte instruction. When executed, this instruction transfers the contents of
-2 zmcumulator to @ memory location whose address is 2275, which is directly given in the
.-~ =0 itseff. This instruction is executed in four machine cycles and takes 13 T-states.
-z fr<t machine cycle is opcode fetch (4T), the second and third are memory read machine
-5 (3T + 3T) and the fourth one is a memory write machine cycle (3T). Let us assume

-2 ~struction is loaded in at the address 2015,

-l

nstruction Mem.Addr Hekcode
STA 2275, 2015 32

2016 75

2017 22

n upeode fetch cycle, the 8085 fetches the machine code of the instruction 32, from
"% memory location 2015, In the fourth clock cycle of this opcode fetch machine cycle, the

Wessor decodes the instruction and decides that it has 10 perform two more memory read

! : 55 2 that,
145, 10 read two bytes from successive locations and get the address 2275, Alter

l;.-) i » to write the
 Bocessor performs a memory write operation as the fourth machine cycle tc

P . [5.
21150t of the accumulator in the memory location whose address 15 o

M, (Opcode Fetch)

T

M (Mamory Rend)

1

|

CLK

1.'

T

P-T-_ (Memery Read)

¥ ‘ Y. I+ T
l

Y

==

M, "Ha.l.f.hw et)

4\

High-Order Memaory Address X_ 20,

High-Order Memory Address l 22,

Memory Addrgss

Memaory Address l

harkss -

High-Order Memaory Address x Unspecified x 20, High-Order Mamory Lodres
1 Low - Orde Low-Oldel l Lo - Circed CoufTLatne
i e W y-{m)y-{Cr)-{=r-1{ - -

Opcode

Egich

Kmm =0,

S,=15,= 0 MemoryRead {IOM =0. S,=15,= 0 MemoryReac |'OM =0 5.

713.3_. = 1

Whmrmory

-]

\
\

/

\.

T\

LI
l WR

Fig (7.9) Timing Diagram of STA 22?5H instruction

~ TIMINGS
S 199

= .

_ st memory read cycle. the pracessor sends the address 2016, and
an(reads the data

s the lower byte of the address which
This ¥ IS slore
. d temporarily inside the processar

A m
g second MEMORy read cycle, the processor sends the address 2017, and
., and reads

~» This is the high
g a8 5 all gher byte of the address which is also stored temporarily insid
2

gs0Of
" :-‘p{‘t’-!"- 0
3

e fourth machine cycle is the memory write cycle. The processor sends the higher

of the address 22 over the lines A - A, and the lower order address 75, over fhe

- “'-. '\r\
oexed AD, - AD. lines using the ALE pulse and an external latch. Since it is a write

- |O/M becomes 0 during T, itself and 'WR becomes 0 during T,. The processor

cumulator contents on the data bus during T,. Now the address 2275, 15 given
the

AD. As explained earlier, the lower order address A, - A, is separated from the

—u:"a*lCr

qaces the aC

s the memory throug
hus. Also, a memory write signa

b
=
gio

-~ mulator are NOw written into the memory whose address is 2275,

h the address bus. The contents of the accumulator are placed on
| is given to the memory. The contents of the

Now the instruction STA 2275,is completed in four machine cycles. The timing diagram

for the instruction STA 2275, is given in Fig (7.9).

78 DELAY CALCULATIONS
is completed in finite number

From the above discussions, it is clear that each instruction |
umber of clock cycles. If W

riod, then we can calculate
instruction along with their

e know the number of

of machine cycles and hence in a finite n
clock cycles for an instruction and the clock pe the time taken to
erecute that instruction. The number of T-slates required for each

fex-codes is given in Appendix-l.

ime taken 0 execule a particular instruction, then

Once we know how to calculate the U
Lis possible to calculate the total time taken 1o complete a group of instructions. This 18
' routines. Time delay routinés can be used 10 produce delays

used to write precise ‘time delay ‘
used In

few minutes or even

few hours Delay programs are

of a illi
4 iew milliseconds to a

200 FUNDAME N TALS OF Mif.:Hf)Pii;r,; B804, .

programs for waveform generation, stepper motor interface, flashing LEDS, 12/ 24 v, "
A ’-I'

simulation, data acquisition systems, afc.,

Assuming the time delay program is written as a subrouting, let us sea how the rout
(e

is written and calculate the delay involved

a) Time Delay using a Single Register
in this method. a single register I8 loaded with a desired number. The content o 4,

register is decremented one by one. The program moves in a loop till the content of fre

register becomes zero. Then the program returns to the main program with a RET instructic,

Let us load C register with FF, and calculate the delay involved. The delay subroutin

and the T-states for each instruction is given below.

MVI CFF, T
LOOP DCR C 4T

JNZ LOOP 7T /10T 5

RET 10T E

The instruction JNZ takes 10 T-states if the content of C register is not zero and ¢

program jumps back to the label LOOP. When the content of C register becomes zero, tné

program continues in its regular sequence to execute the RET instruction and for this, JNZ

— s

lakes only 7 T-slates.
-et us represent JNZ with 10 T-states as JNZ, and JNZ with 7 T-states as JNZ,.

'he instructions MV C, FF and RET are executed only once. DCR C is executed 2
imes. JNZ is also executed 255 times, but for 254 times it takes 10 T-states and for 0 |

akes 7 T-states. Therefore, the total time delay involved can be written as

ielay in secs = Delay outside the loop + Delay inside the loop

elay outside the loop = Time to execute (MVI C, FF.. + DCR C + JNZ, + RET) once:

- ; - 201
Therefore, if the count loaded ipy C register

'LS N mn (lﬁrima| then i
:C en in genearal, the time
1y can be calculated as .
il

elay outside the loop = Time 1o execute (Mv

= Time to execyte (DCR
Nelay L‘\lltSlde the]O{'Ip =7 T " 4 T4 7 T

C.N+DCR C + IJNZ, + RET) once
C+INZ y(N.

nelay inside the loop
.

1) times
*10T=287

nelay inside the loop = (4 T 4 19 NN~ 1)

Therefore,
Total delay in secs = [28 + 14 (N - T

where T = 0.325 microsecs = 325 hanosecs = 325 ns, when the crystal frequency
< 6144 MHzZ.

ForN

FF, =255

I

Delay = [28 + 14 X 254] 325 X 10 secs

[28 + 3556) 325 X 10° secs

3584 X 325 X 10° secs

1164800 X 10° secs

1.1648 X 10° secs

1.1648 msecs

NOTE:

Since the delay is called from the main program, the time taken for the CALL instruction

can also be included in the delay calculation, if we want to be very precise. CALL instruction
lakes 18 T-states.

Therefore, the delay outside the loop is 28 T + 18 T = 46 T-states.

Ifwe want to increase the delay without modifying the program, we can introduce NOP

struction one or more times which increases the T-states within the loop. The modiied
Poaram with one NOP i shown below.

MVI T /

| O T 11
NOW 11
INS L0 T/ mM

L 101

Now, Delay © (32 « 14 (N 1)) 1T without CALL instroation
Delay = (B0« 14 (N 1)) T with CALL Instruction

b) Delay using two registoers
In the first program. a single register C was londed with the count Ff BN ey,
One by one till the count reaches zero. This part of the program can be kegt in 4 i){.
and can be repeated number of times using another register to generate larger detay |,
take BE _in C register and OA, In B register and repeat the inner loop OA times, o 1

The program s given below.

MVI B,0A, . Load 10 in B register

LOOP 1 MVI CFF, . Load 255 in C register

LOOP 2 DCR C . Dacrement count in C register by one
INZ LOOP 2 . IT(C) is not equal to zero, continue in LOOF :
DCR B . Decrement count in B register by one
JNZ LOOP 1 . IF(B) is not equal to zero, continue in LOOP
RET . Roturn to the main program

By changing the count in B and ¢ registers, lime delay of different magnitudes c2"

qenerated.

¢) Time delay using register pair

Instead of using two registers B and C separately as shown above, the 169
BC (or DE or HL) can be loaded with a 16-bit number and decremented one by ¢ "
count reaches zero. This will be very uselul in generating delays of 1 second o

ele
The point to remember is that the instruction that decrements the register pair (DCX &

T ——

ot affect the zero flag. Therefore, we have to think of another w
i

pes” Y 1o determ;
a0 ntent of the register pair has reached zero after the count g ermine whether
Wn. The ¢
the © egister (or higher register) is brought to the accumulator ang -ontent of the
on®" ¢ logical OR Operation is

sith the content of the higher register (or lower register). The zerq 1
Jone

A9 will be set by th
ARA mstruc:t:-on only when the contents of both the registers are 0's .

Let us write @ program using the register pair DE. loaded with FFFF

LXI D.FFFF, . Load 65,535 in DE register pair
Q0P DCX D . Decrement the count in DE by one
MOV AD . Copy the content of D in A
ORA, E . OR the contents of A and E
JNZ LOOP . If zero flag is not set, continue in LOOP
RET . If count has reached zero, return to the main

. program

Knowing the T-states for each instruction, the delay generated by the above program
:an be calculated.

Instruction T-states
LXI D 10
DCX D 6
MOV AD 4
ORA, E 4
JNZ 7/10
RET 10

"the count in DE register pair is N,

the totg] number of T-states

=T-states of (LX| D..+(DCX D +MOV AD+ORA E)
T‘SlatEs

N + JNZmlN' 1)+ INZ, + RET)

= 10 + (6+4+4)N + 10(N-1) + 7 + 10
= 2N+ 17
Time delay = (24N + 17) X T seconds

= 0.511 sec.
Omitting 17, time delay = 24 X 65,535 X 0. 325 X 10°

Practice Questions:

1. What is the purpose of the MOV instruction in 8085 assembly language?

2. What is the difference between the ADD and SUB instructions in 8085?

3. Explain how you would perform multiplication of two 8-bit numbers in 8085 assembly language.
4, What is the function of the HLT instruction in an assembly program?

5. In the context of the 8085, what is the role of the accumulator in arithmetic operations?

6. What is the purpose of using MOV and MVI instructions in data transfer?

7. What is the significance of the JZ instruction in 8085 assembly language?

8. What does the CMP instruction do in the 8085 microprocessor?

9. What is the purpose of a time delay in an assembly language program?

10. What is the basic function of the CALL and RET instructions in 8085 assembly language?
Additional Resources :

https://www.geeksforgeeks.org/instruction-cycle-8085-microprocessor/

https://www.shivajicollege.ac.in/sPanel/uploads/econtent/dd451b1ee29870bdfd26b6ecaa84de98.pdf

References:

1. Fundamentals of Microprocessor 8085-V.Vijayedran

https://www.geeksforgeeks.org/instruction-cycle-8085-microprocessor/
https://www.shivajicollege.ac.in/sPanel/uploads/econtent/dd451b1ee29870bdfd26b6ecaa84de98.pdf

