MARUDHAR KESARI JAIN COLLEGE FOR WOMEN,
VANIYAMBADI

PG & RESEARCH DEPARTMENT OF PHYSICS

CLASS : 111 BSC PHYSICS

SUBJECT NAME : FUNDAMENTALS OF MICROPROCESSOR-8085
SUBJECT CODE : FEPH 63A

SYLLABUS

UNIT -1l

INSTRUCTIONS & ADDRESSING MODES

Data transfer/ copy Instructions-Arithmetic, Logical - Two examples each
instructions - Branch instructions-Unconditional and conditional jump - Call and
Return instructions - Stack and Stack related instructions - 1/O and Machine

control instructions - Addressing modes.

4.3 DATA TRANSFER INSTRUCTIONS - |

The data transfer instructions transfer or copy a data from register to register, register
to memory or memory to register. It -also transfers an immediate data (data contained in

the instruction itself) to register or memory.
Data transfer instructions do not affect any flags.

In this section, we will understand'some simple instructions. Some of the slightly
complicated data transfer instructions are discussed in the next chapter.

NOTE: The‘contents of registers and memory are in binary form. Only for convenience, the

data are represented in Hexadecimal.

INSTRUCTION SET OF 8085 - | ae
L4

The complete instruction set of 8085, with their respective hex codes are given
in Appendix-l. The hex codes of many Instructions are freely used in many examples
in this book. We can get the hex code of any instruction by simply referring to
Appendix-l and it need not be memorized.

a) Move Instructions:
i. Move between Register and Register

These instructions copy an 8-bit data from an 8-bit register to another &-bit register. The

registers used are A, B, C, D, E, H and L. The general form of mave instruction is,
MOV r,r

where r_is the register that acts as a source and r,is the register that acts as a

destination.
In this instructian, MOV is the opcode and r, and r, are operands.
This operation can also be represented as,
(r,) € (r)
The parantheses are short-hand for ‘contents of ".

After the operation, only the contents of destination register is altered but the contents

of source register is not changed.

For example, the instruction,
MOV BA

moves (copies) the contents of A register to B register.
(B) € (A

Let us assume that register A has a data 45 and register B has a data 7C, 10 start with

Let us see what happens after executing the instruction MOV B A.

_ " " OUje

T el

Before:. A | !er .
| ' u
45, :7CH'
[I

Instruction: MOV BA
After: A | iB ‘
SR

After the operation, only the contents of B register (destination) has changed. The contents
of A register (source) is not altered.

The move instructions are one-byte instructions, because both the opcode and operand
are specified in a single byte. For example, the instruction MOV B,A has a single byte hex

code 47, When the hex code of the instruction is loaded in memory, only one memory
location is required.

ii. Move between Register and Memory:

The letter M is used to represent memory. But there are thousands of memory locations
(2048 locations for a 2KX8 memory) and each location has a distinct address. In 8085, the
desired 16-bit memory address is first loaded in HL register before using any instruction
that has a memory reference, M. The general form of the instruction is,

MOV M r and MOV rM
where ris a general purpose register or accumulator. It is also an one-byte instruction.
The operation can be represented as,
M((HL)) €« (r) and (r) € M((HL))

(HL) represents content of HL register. ((HL)) represents contents of memory whose
address is available in HL register pair. M with ((HL)) is optional.

INSTRUCTION SET OF 8085 - | 67

For example, to move a data from accumulator (A) to memory (M) the corresponding
instruction is MOV M. A. This Instruction duplicates the contents of the accumulator on to a
memory location whose address is stored in HL register pair,

Let us take the initial content of register A as 56, and the content of register HL be
2050,,. Also, let us assume the memory whose address is 2050, has a random data 99,..

[|

Before: A H L Memory | .
] Address]Data
56, 20,| |50, 2050, | 99,

e ——— ——e -

The instruction is MOV M,A.

After: The contents of A is moved to memory whose address is in HL register

-

‘Memory
) HE Address | D3t
56,, |20, |50, | 2050, | 58, |

We can see that the contents of A register is not altered. The HL register pair is used
as a memory pointer.
Similarly, the instruction, MOV AM copies the contents of a memory location whose

address is in HL register on to A register.

b) Move Immediate Instruction:

The move immediate instruction has the form,

MVI r,data8 and MVI M,data 8

is instruction
where r is a general purpose register of accumulator and M refers to memory. This .
3 £ " i memory.
transfers the byte of data specified within the instruction itself to a register or

(r) & data8 and M((HL)) ¢ data8

FUNDAIVIEIN | ML W1 ivrrses s— - =~y ~5085

- —8

This is a two-byte instruction. The first byte represents the operation code and the secqy,
byte represents the 8-bit data. This type of instructions require two memory locations, The
byte corresponding to the opcode is stored in the first memory location and the by

representing the data is stored in the second memory location.

For example, MVI B,25 transfers the data 25, to B register. For this instruction, th
hex code 06, is stored in the first memory location and the data 25, is stored in the ney

memory location.

The instruction, MVI M, 25 transfers the data 25, to a memory location whose address
's In HL register. Therefore, the desired address must be loaded in HL first, before executing
the MVI M, 25 instruction. '

Example 4.1:

Write a sequence of instructions that will load FF, in C register and transfer the byte to
a memory location whose address is 2050,,. Also write the sequence of instructions as to
how the operation is done without using C register.

Solution:

L register pair is used as a memory pointer. The 16-bit address 20750H is first loaded in
HL register pair. The higher byte 20, is moved to H register and the lower byte 50, is moved
to L register. The data FF , is moved to C register. Then the data in C register is moved to
the memory. The required sequence of instructions is:

MVI H,20, ; (H) = 20,
MVI L,50 ; (L) = 50,
MvI C,FF, ; (C) = FF,
Mov M,C ; (€) 15 moved to the memory whose

) address 18 1'.’! HL reglster pair

| !
ML L

To load FF, in memory without using C register, the sequence of instructions is,

MVI H,20.
MVI L,50,
MVI M,FF, ; The immediate data FF is moved to

the memory whose address is in HL

NOTE: Comments are written after a semi colon.

INSTRUCTION SET OF 8085 - | 69

¢) Load Immediate Register Pair (Load Extended Immediate):

The load immediate register pair instruction is used to load a 16-bit immediate data into
a specified register pair. Since 16-bit number is involved, the word ‘extended’ is also used.
The general form of this instruction is,

LXI r ,data 16

where r, stands for one of the register pairs BC, DE, HL or the 16-bit Stack Pointer SP.
(r,) € data16

For example, the instruction,
LX! H,2050,,

will load 20, into H register and 50, into L register. These instructions are three byte
instructions. The first byte is for the opcode and the remaining two bytes for the 16-bit
data. In the 16-bit data 2050,,, which is made up of two bytes, 20, is referred to as the higher
byte and 50,, is referred to as the lower byte. For the instruction,

LXI H,2050,,

the opcode of the instruction 21, is stored in the first memory location. The lower byte
50,, is stored in the second memory location followed by the higher byte 20, in the third

memory location.

uction, LXI H,2050,, to load HL register pair with a 16-bit
H,20, and MVl L,50, as we have

Now that we have a single instr
data, 2050,,, we need not use two instructions like MVI

done in the solution to Example 44

" The instruction LXI B,1234, loads the register pair BC with 1234, (12,in B register

and 34 inC register).
The instruction LXI SP, 27FF, loads the stack pointer with 27FF,. This instruction IS
used to initialize the top of stack. Stack related operations are discussed in Chapter 5.

Example 4.2:
Write a program to transfer one byte
ose address is 2550,..

from a memory location whose address is 2450,

to another memory location wh

Solution:

’ . 0
LI H, 2450, ; Load HL pair with 2450, I
| e addr
MOV A, M . Move the data from memory whos
i 2450, to A

LXI H, 2550 } Load HL pair with 2550,

whose
MOV M,A . Move the data from A to memory

; address 1is 2550,

HLT ; End of program

d) Store Accumulator direct:

Store accumulator direct, STA addr stores the contents of the accumulator in the memory

whose address is specified in the instruction itself.
M(addr) € (A)

For example the instruction,
STA 2550,

stores the contents of the accumulator in the memory whose address is 2550, (directly given
in the instruction).The contents of the accumulator is not altered.

. | Memory
Before: A Address | Data
e - — ' - —_—
23, 2550, ‘ 67,

Instruction: ~ STA 2550,

Memory ﬁ‘]
Address | Data ’
i i o

2550,

After:

INSTRUCTION SET OF 80B5 - I

e) Load Accumulator direct:

Load accumulator direct, LDA addr loads the accumulator with a byte from the memory

location whose address is specified in the instruction itself.
(A) € M(addr)
For example the instruction,

LDA 2450,

copies the contents of the memory location whose address is 2450, (directly given in the

instruction) into the accumulator. The contents of the memory location is not altered. Itis a

three byte instruction.

-
~

Before: A Memory
L__ Address | Pata !
23, 2450, | 67, |
l |]
Instruction: LDA 2450,
; T Memory 7
After: A ¢ ot Addraes Data
- e .
B (W |

Let us take Example 4.2 once again. With LDA and STA instructions, the program is

much simpler.
LDA 2450,
STA 2550,

So far, we have seen different types of instructions to transfer data between register
and register or register and memory. We should remember that no instruction is available
in 8085 (or 8086) to transfer data directly from one memory location to another memory

location.

Some more data transfer instructions are introduced in Chapter 5.

4.4 ARITHMETIC INSTRUCTIONS

The arithmetic group of instructions are used to perform addition, subtraction, incremep,

and decrement operations.

a) Addition Instructions:

i. ADD with register / memory

The add instructions, ADD r and ADD M are used to add the contents of a specifieq

register or memory to the contents of the accumulator. The result is stored in the accumulator,
(A) € (A)+(r)

The instruction ADD B, adds the contents of A and B registers and places the resultin

A register.
(A) € (A)+(B)
ADD instructions affect all flags.

Example 3.1 is repeated here.

(A) = 79, = 0111 1001
(B) = 68, = 0110 1000
ADD B E1 = 1110 0001

The result in the accumulator is E1,.
.~ The result is less than FF . Therefore Carry flag is reset.

The MSB of the result is 1. Therefore the Sign flag is set. The sign flag is used only with
signed numbers. For unsigned numbers, as in this example, sign flag need not be used.

The result is not zero. Hence the Zero flag is reset.

The result has even parity. So the parity flag is set.

During the addition, a carry is generated at position D, and passed on to D,. Thereforé
the auxiliary carry flag is set.

INSTRUCTION SET OF 8085 - | '
73

The flag register bit position is as shown.

S|Z|X|AC[X |P|X]|Cy

Assuming X = 0, the flag register will have the bit values as

1{olo|l1]0]l1]l0]o0

The content of the flag register is 94,. If we take X = 1, the content of the flag
register is BE,..

Instead of B register, we can use any other register. However, to add the contents of
memory with accumulator, the instruction ADD M is used. As mentioned earlier, whenever
we refer to a memory location using the letter M, we should remember that the 16-bit memory

address is in HL register pair.
(A) € (A)+ M((HL)

ii. ADD immediate P
2z

The add immediate instruction, Ai)i’data 8, adds the contents of the accumulator with

an 8-bit data that is included in the instruction itself.

(A) € (A) + data 8

For example, ADI 37, will add 37, to the contents of the accumulator and place the

result in the accumulator.

iii. ADD with carry

ction is used to add the contents of a specified register of memory

The add with carry instru
sult is stored in the

along with carry flag to the contents of the accumulator. The re

accumulator. The instruction is of the form,

ADC r and ADC M

B
The instruction ADC B, adds the contents of A and B registers with the carry flag ang

places the result in A register.
(A) €« (A)+(B) + Cy.

In this, Cy is taken as 1 when the Carry flag is in set condition and taken as jf the

carry flag is in reset condition at the time of executing the add with carry instruction,

Let us take the Carry flag to be in set condition i.e., .

Let (A) =79, and(B)=68, On executing ADC B instruction, the contents of A

calculated as,

(A) = 79, = 0111 1001
B) = 68, = 0110 1000
Cy = 1 = 1
ADC B E2, = 1110 0010

H

The result in the accumulator is E2,

The instruction ADC M, adds the contents of memory along with the Carry flag to the
accumulator and places the result in the accumulator. We know that the address of the

memory is available in HL register.

Example 4.3:

Write a program to add two 16-bit numbers 1234, and 56FF , and store the 16-bit'result
in two successive memory locations 2050, and 2051,.. |

Solution:

Let us take the first 16-bit number in BC register pair and the second 16-bit number in
DE register pair.

(BC) 1234,

(DE) 56FF,,

First, the lower bytes in C register and E register are added with the help of the
accumulator and the result is transferred to the memory location 2050,,. In the next step,
the higher bytes in B register and D register are added, again, using the accumulator. But
now, we have to take into account the carry (if there is a carry) produced by adding the
lower bytes. The carry must be included while adding the higher bytes. The result in the

accumulator is now transferred to the memory location 2051, The program is given below

LXI B,1234, Load 1234, in BC

LXI D,56FF, ; Load 56FF, in DE

MOV A,C ; Copy C 1n A

ADD E ; (A) < (A) + (E)
; 34, + FPF; = 33, and carry 1

STA 2050, ; Store the lower byte (33,) of result
; 1n memory

MOV A,B ; Copy B in A

ADC D ; (A) € (A) + (D) + Cy
g 12. + 58, % A = 69,

STA 2051, ; Store the higher byte (69, ,)of result in
. memory, the 16-bit result is 6933,

HLT ; End of program

NOTE: The 16- bit addition can be done in a more efficient way by using DAD instruction.

However, this method helps us to understand ADC instruction.

iv. ADD immediate with carry

This instruction is of the form, ACI data 8 and adds with carry, the contents of the

accumulator with an 8-bit data that is included in the instruction itself.
(A) € (A)+data8+Cy

All types of ADD instructions affect all flags.

b) Subtract Instructions:

I. SUB with register/memary

The subtract instructions, SUB r and SUB M are used to subtract the Contentg o,
specified register or memory from the contents of the accumulator. The result is Stored

the accumulator. For SUB r, we can write,
(A) € (A)—(r)

The instruction SUB B, subtracts the contents of B register from the contents of A register

and places the result in A register.

For example, let

(A) = 79, = 0111 1001
B = 65, = 0110 0101
SUB B 14, = 0001 0100

The result in the accumulator is 14,

On the other hand, if,

(A) = 85 = 0110 0101
(B) = 79, = 0111 1001
SUBB -14, = 1110 1100 with a borrow of 1.

—_—

The result in the accumulator is EC,. That is, the result —-14,, (minus 14,) is obtained in
2's complement form. To check ,

+14, = 0001 0100
1's complement of 14, = 1110 1011
2's complement of 14, = 1110 1100

(1's complement plus 1)

That is, -14,, is represented in 2's complement form as EC

Also, this operation has
produced a borrow and so the Carry flag is set to 1.

INSTRUCTION SET OF BOBS - | 77

The instruction SUB A clears the accumulator since (A) — (A) = 0.

NOTE: Negative numbers are always represented in 2's complement form in all
microprocessors and hence In computers.

Instead of B register, we can use any other register. However, to subtract the contents
of memory from accumulator, the instruction SUB M is used. As mentioned earlier, whenever
we refer to a memory location using the letter M, we should remember that the 16-bit memory

address is in HL register pair.
(A) € (A) — M((HL))

ii. SUB immediate

The sub immediate instruction SUI data 8, subtracts the 8-bit data that is included in the

instruction from the accumulator.
(A) € (A) — data8
For example, SUI 37, will subtract 37,, from the contents of the accumulator and places

the result in the accumulator.

iii. SUB with borrow

The subtract with borrow instruction is used to subtract the contents of a specified register

or memory along with borrow (carry flag) from the contents of the accumulator. The resuit -

is stored in the accumulator. The instruction is of the form,
SBB r and SBB M

For SBB r, we can write,

(A) € (A)—(r)—Cy
The instruction SBB B, subtracts the contents of B and the carry flag from the

accumulator and places the result in A register.

(A) € (A)— (B)— Cy
In this, Cy is taken as 1 when the carry flag is in set condition and taken as 0 if the carry

flag is in reset condition at the time of executing the sub with borrow instruction.

Lt e s e U NIV NWUUEOJUK . 80&:

The instruction SBB M, subtracts the contents of memory along with the Carry flag fron

the accumulator and places the result in the accumulator. We know that the address of the
memory is available in HL register.

Iv. SUB immediate with borrow

This instruction is of the form, SBI data 8 and subtracts a data byte with borrqy,
(carry flag) from the contents of the accumulator and places the result in the accumulato,
The 8-bit data is included in the instruction itself.

(A) € (A)—datas —Cy
All types of SUB instructions affect all flags.

c) Increment/ Decrement Instructions:
i. Increment Register or Memory

The instruction INR r increments the contents of the specified register by 1.
()] € {r)+1

The result is in the specified register itself. For example INR C increments the contents A
of C register by 1 and the new value is stored in C register.

The instruction INR M increments the contents of memory location, pointed to by HL
register by 1.

ii. Decrement Register or Memory
The instruction DCR r decrements the contents of the specified register by 1.
(r) € (r) — 1

The result is in the specified register itself. For example, DCR B, decrements the contents
of B register by 1 and the new value is stored in B register.

The instruction DCR M decrements the contents of memory location, pointed to by HL
register by 1.

Increment / Decrement register or memory instructions affect all flags except the

carry flag.

iii. Increment Register pair
The instruction INX r, increments the contents of the specified register pair by 1.
(r) € (r) + 1

The register pairs used are BC, DE, HL and the 16-bit Stack Pointer. For example if the
initial value in HL register pair is 14FF , then the instruction INX H increments the 16-bit
value in HL register pair by 1 and the new value 1500, is stored in HL.

iv. Decrement Register pair
The instruction DCX r , decrements the contents of the specified register pair by 1.
(r) € (r) — 1

The register pairs used are BC, DE, HL and the 16-bit Stack Pointer. For example, if the
initial value in DE register pair is 1500,,, then the instruction DCX D decrements 16-bit value

in DE register pair by 1 and the new value 14FF is stored in DE.

Increment / Decrement register pair instructions do not affect any flags.

Example 4.4:
Specify the register and memory contents during each step after executing the following

instructions.
LXI H,2050,
MVI B,75,
MOV M.B
INR M
INR L
INR H
INX H

MOV M,B

= - o

Solution:
LXI H,2050, ; (HL) = 2050,
MVI B,75H ; (B) =& 75
MOV M,B ; The contents of B = 75, 1s moved to
;/ memory whose address 1is in HL = 2050~
INR M ; Contents of memory = 75, is
y ;/ lncremented to 76,
INR L ;/ (L) = 50, is Incremented to 51,
INR H / (H) = 20, is incremented to 21,
INX H ;/ (HL) = 2151; is incremented to 2152,
MOV M,B ; (B) = 75, 1s moved to memb:y whose

; address is now 2152H

d) Double-Add Instructions

The instruction DAD r, adds the contents of the specified re
pair. The result is left in the HL register pair.

gister pair to HL register

(HL) € (HL) + (1)

if the result exceeds FFFF,, the carry flag is set. No other flags are affected.

For example, DAD B instruction adds the contents of BC
of HL register pair and the 16-bit result is stored in HL re
to add two 16-bit numbers with one instruction.

register pair with the contents
gister pair. This instruction is useful
Let us take Example 4.3 once again but give a different type of solution.

Example 4.5:

Write a program to add two 16-bit numbers 1234, and S6FF,, and store the 16-bit result
in two successive memory locations 2050,, and 2051,

Solution:

Let us take the first 16-bit number in BC register pair and the second 16-bit number in
HL register pair.

(BC)

1234,
(HL)

56FF,

Add them using DAD B instruction and get the result in HL and then transfer it to memory.

LXI B, 1234, ; Load BC with 1234,
LXI H,56FF, ; Load HL with 56FF,
DAD B ; Add (BC) with (HL), result in HL
MOV A,L ; Move lower byte of result to memory
STA 2050, ; whose address is 2050,
MOV A,H ; Move higher byte of result to memory
STA .2051 ; whose address is 2051,
HLT ; End of program

4.5 LOGIC INSTRUCTIONS

Logic instructions in 8085 are useful for performing various logical operations with the
contents of the accumulator. These instructions perform AND, OR and EX-OR operations.

This logical group also includes instructions to compare two bytes and rotate the contents

of the accumulator. Let us discuss them one by one.

a) AND Instructions
i. AND with register/memory
The instruction ANA r, performs logical AND operation between the specified register

and accumulator on a bit by bit basis. The result is placed in the accumulator.

The AND instruction modifies S, Z and P flags. But Cy flag is always reset and AC flag

IS set .

For example, ANA B instruction performs logical AND operation between the 8-bi,

the B register and A register and places the result in A register.

If (A) = 97, = 1001 0111
and if B) .= cs, = 1100 0101
then ANA Bresultsin, (A) = 10000101 = 85,

The instruction ANA M, performs logical AND operation between the memory g
accumulator on a bit by bit basis. The result is placed in the accumulator.

ii. AND Immediate

The instruction ANI data 8 performs logical AND operation between the contents of the

accumulator and the immediate data which is given in the instruction itself.
S, Z and P flags are modified. Cy flag is reset and AC flag is set.
ANA rand ANI data 8 can be used for masking specific bits. For example,

if (A) =97, the instruction AN| OF,, masks the upper 4-bits (or the upper nibble).

(A) = 97, = 1001 0111
data 8 = oF, = 0000 1111
ANl OF gives the result as - 0000 0111 = 07, in A register.

Similarly, the instruction ANI FO,, masks the lower nibble.

b) OR Instructions

I. OR with register/memory

The instruction ORA r, performs logical OR Operation between the specified regist'
and accumulator on a bit by bit basis. The result is placed in the accumulator.

The OR instruction modifies S, Z and P flags. Both Cy flag and AC flag are reset.

For example. ORA B instruction performs Iogi'cal OR operation between the 8-bits
the B register and A register and places the resylt In A register.

If (A) = 97, = 1001 0111
and if (B) = Cs, = 1100 0101
then ORA Bresults in, (A) - 1101 0111 = D7,

The instruction ORA M, performs logical OR operation between the memory and

accumulator on a bit by bit basis. The result is placed in the accumulator.

ji. OR Immediate

The instruction ORI data 8 performs logical OR operation between the contents of the

accumulator and the immediate data which is given in the instruction itself.

S, Z and P flags are modified. Cy flag and AC flag are reset.

c) EX-OR Instructions
i. EX-OR with register/memory

The instruction XRA r, performs logical £X-OR operation between the specified register
and accumulator on a bit by bit basis. The result is placed in the accumulator.

The XRA r instruction modifies S, Z and P flags. Cy flag and AC flag are reset.

For example, XRA B instruction performs logical EX-OR operation between the 8-bits ir

the B register and A register and places the resuit in A register.

F () = 97, = 10010111
and if 8 = C5 = 1400 0101
then ARA B results in, (A) = 0101 0010 = 52,
With (A) = 97,, let us perform X A
(A) = 97, = 1001 0111
A) = 97, = 1001 U111
XRA A results in, (A) = 0000 0000 =00,

i.e.. XRA A clears the accumulator. With this single instruction, we can clear accumulator,

Ly flag and AC flag.

\y
\M

The instruction XRA M, performs logical EX-OR operation between the Memg
accumulator on a bit by bit basis. The result is placed in the accumulator.

ii. EX-OR Immediate

The instruction XRI data 8 performs logical EX-OR operation between the Contey,

the accumulator and the immediate data which is given in the instruction itself,
S, Z and P flags are modified. Cy flag and AC flag are reset.

d) Compare Instructions

i. Compare with register/memory

The instruction CMP r, compares the contents of the specified register with that of ¢
accumulator. The comparison is performed by subtracting the contents of the specfi
register from that of the accumulator. The contents of the registers are not altered aft

the execution of this instruction. The result of the comparison is indicated by the(
and Z flags as given below.

If (A) < (r), Cy flag is set and Z flag is reset.
If (A) = (r), Z flag is set and Cy flag is reset.
If (A) > (r), Cy and Z flags are reset.

The CMP r instruction also modifies S, P, AC flags.

For example, CMP B compares the contents of B register with the contents of "
accumulator. This is done by subtractmg the contents of B from that of A , but the cone"

of both the registers are not altered. The result of the comparison is indicated by CY .
flags.

if (A) 97, and

(B) = C5

H

then CMP B instruction sets the Cy flag and resets the Z flag since

(i
(A) < (B). The con®
of A and B are not altered.

INS I RUL VIV OL | Wi DUV = |

The instruction CMP M, compares the contents of memory with that of the accumulator.

ji. Compare Immediate
The instruction CPl data 8 compares the immediate byte with the contents of the

accumulator by subtraction. Only the flags are modified as in the previous example.

e) Rotate Instructions:

The rotate instructions are used to rotate the contents of the accumulator to the left or

right, through carry or without carry.

i. Rotate Accumulator Left without carry
The instruction RLC rotates the contents of the accumulator by one bit position to the
left. The MSB bit D, is shifted to LSB bit D,. Also, the D, bit becomes the carry flag bit.

Only carry flag is modified. This is shown in Fig (4.3).

Accumulator D,

LSB

Cy msB

Fig (4.3)

For example, if (A) = 97, and if Cy flag = O, let us see what happens when RLC is executed.

Accumulator D,

0 i‘—[1 0 0 1 0 1 1 1 K

the contents of accumulator and the status of the Cy

After executing RLC instruction,

flag is as shown below.

Cy D,

Contents of the accumulator become 2F,and Cy = 1.

ii. Rotate Accumulator Left through carry

The instruction RAL rotates the contents of the accumulator by one bit position to ty,

left through the carry flag. The MSB bit D, becomes the car il
flag bit is shifted to LSB D. Only carry flag is modified. This is shown in Fig

ry flag bit and the initial carry

Accumulator D

cy k| mse LSB

Fig (4.4)

For example, if (A) = 97, and if Cy flag = 0, let us see what happens when RAL is executed.

Cy D, Accumulator D

0 K 1 0 0 1 0 1 1 1

After executing RAL instruction, the contents of accumulator and the status of the Cy
flag is as shown below.

Cy D, Accumulator D

[~<1<~o 0 1 0 1 1 1 o(——-'

Contents of the accumulator become 2E,and Cy = 1.

iii. Rotate Accumulator Right without carry

The instruction RRC rotates the contents of the accumulator b
right. The LSB bit D is shifted to MSB bit D,. Also, the D, bit be
Only carry flag is modified. This is shown in Fig (4.5).

y one bit position to thé
comes the carry flag bit

Accumulator
0,

L LT [e

= E

Fig (4.5)
For example, if (A) = 97 _ and if Cy flag = 0, let us see what happens when RRC is executed.

D Accumulator D Cy

1 0 0 1 0 1 1 1 A 0

After executing RRC instruction, the contents of accumulator and the status of the Cy

flag are s shown below.

D, Accumulator D, Cy

1 1o o [1 o |1 |1 1

Contents of the accumulator become CB,, and Cy = 1.

iv. Rotate Accumulator Right through carry

The instruction RAR rotates the contents of the accumulator by one bit position to the

right through the carry flag. The LSB bit D, becomes the carry flag bit and the initial carry

flag bit is shifted to MSB D,. Only carry flag is modified. This is shown in Fig (4.6).

Accumulator
D,

= — _C]/]

Fig (4.6)

F MICRUFRULEDJUK - g
FUNDAMENTALS O —
88 e

what happens when RAR'IS execyyg
ee

; =0, letuss
For example, if (A) = 97, and if Cy flag = 0,

Cy

jononnnoopby

d the status of the ¢
After executing RAR instruction, the contents of accumulator an Y

flag are as shown below.

Accumulator

1
o {1t oo | 1] o 1] 1

Contents of the accumulator become 4B, ,and Cy = 1.

4.6 SPECIAL INSTRUCTIONS

a) Decimal Adjust Accumulator Instruction

The instruction DAA is used to produce a correct BCD

result when BCD addition is
performed. Refer Sec 1.4 for BCD addition.

fy the DAA Instruction. Let ys add two BCD
numbers 05 and 07.
MVI A,o05 /i (A) = 05
MVI B, 07 / (B) = 07
ADD B ; =
i (A) = 0C. . Bot 4 correct BCD result
DAA ;(A) = 12

However, we should remember that DAA instruction is used only after an addition

or increment operation which affect the auxiliary flag. Also, DAA instruction is
applicable only for the data in the accumulator.

That is,
MVl A0C
DAA

H

will not produce the desired result of converting 0C,, to 12.

b) Complement Accumulator

The instruction CMA complements each bit in the accumulator. Flags are not affected.

For example if

(A) = 26, =0010 0110, then the
instruction CMA makes,

(A) = D9, =1101 1001
c) SetCarry |
The instruction STC sets the camy flag to 1. No other flags are affected.
d) Complement Carry

The instruction CMC complements the carry flag. No other flags are affected.

5.1 DATA TRANSFER INSTRUCTIONS-II

We were introduced to a number of data transfer instructions like move, move immediate,
store accumulator, load accumulator etc in Chapter 4. Those instructions are just sufficient
for simple data manipulations. Having understood some basic instructions, now, we are ready

to learn some slightly difficult data transfer instructions.
As mentioned in the previous chapter, data transfer instructions do not affect any of the

flags.

a) Store Accumulator Indirect
We have already seen an instruction, STA Addr 16, which means, to store the contents

of accumulator in a memory location whose address is directly given in the instruction itself.
The accumulator contents can also be stored in a memory location whose address is

indirectly given in register pairs BC or DE.
The instruction STAX B, stores the contents of the accumulator in a memory location

whose address is in BC register pair.

(BC)) <€ (A)

For example, if (A) = 45, and (BC) = 2050,, then the instruction STAX B, transfers
ddress is 2050,

the data 45, in the accumulator to the memory location whose a

i ory location whose
Similarly, STAX D , stores the contents of the accumulator in a memory

address is in DE register pair.

((DE)) € (A)
There is no instruction like STAX H. To store the contents of accumulator in memory
ereis n

whose address is in HL pair; we have a different instruction MOV M,A.
For example, to store the contents of accumulator in a memory location whose address

is 2050, we can follow any one of the following four instructions.
-

i. STA 2050,
i. LXI B, 2050, followed by STAX B
ii. LXI D, 2050, followed by STAX D
iv. LXI H, 2050, followed by MOV M,A

b) Load Accumulator Indirect -

We have an instruction, LDA Addr 16, which means to load the accumulator with the
contents of a memory location whdse address is directly given in the instruction itself. The

accumulator can also be loaded from a memory location whose address is indirectly given
in register pairs BC or DE.

The instruction LDAX B, loads the accumulator with the contents of a memory location
whose address is in BC register pair.

(A) € (BC)

Similarly, LDAX D, loads the accumulator with the contents 0

‘ fa memory location whose
address is-in DE register pair.

(A) € ((DE)

For example, to load the accumylator with the contents of

a memory location whose
jdress is 2050H, we can follow any one of the four instructions.

NN LIV iy O T UF SUSYS - [T =

i. LDA 2050,

ii. LXI B, 2050, followed by LDAX B
iii. LXI D, 2050, followed by LDAX D
iv. LXI' H, 2050, followed by MOV A.M

Example 5.1:
Write a program to exchange the contents of memory locations 2050, and 2370,, without
using STA.. and LDA.. instructions.

Solution:

LXI B,2050, ; Load BC pair with 2050,

LXI D,2370, + Load DE pair with 2370,

LDAX B s Load A with memory whose addr is 2050,
MOV L,A ; Save the first number in L

LDAX D ;/ Load A with memory whose addr is 2370,
STAX B ; Move (A) to memory whose addr is 2050,
MOV A,L ; Move (L) to A

STAX D ; Move (A) to memory whose addr is 2370,
HLT ; End of program

¢) Store H and L Direct

The instruction SHLD Addr 16 is used to store the contents of H register and L register
in two successive memory locations. The contents of low register L is moved to a memory
having a lower address and the contents of high register H is moved to a memory having

a higher address.
(Addr) €& (L), (Addr+1) €& (i)

For exampie, the instruction SHLD 2050, copies the L register into a memory location
2050, and the H register into the merncry location 2051, it is a three byte instruction and

would be coded in three successive memory locations as 22, 50, 20.

d) Load Hand L Direct:
Store H anq |

truction LHLD Addr16 perform
ter with

f the following address.

s the reverse operation to that of

The ins data from the address given in the instructigy,

ct. LHLD Addr16 loads the L regis

dire
contents O

and loads the H register with the

L € (Addn, (H € (Addr + 1)

the instruction LHLD 2060, loads the L register with data from the address

For example,
ter with the contents of the following

2060, (given in the instruction) and loads the H regis

address, 2061,..

Example 5.2:

(Same as Example 4.3)
Write a program to add two 16-bit numbers 1234, and 56FF, and store the 16-bit result

in two successive memory locations 2050, and 2051,..

Solution:
LXI B,1234, " ; Load BC with 1234,
LXI H,S56FF, ; Load HL with 56FFH
DAD B ;/ Add (BC) and (HL) and put the résult in HL
SHLD 2050, ; Store (L) in 2050, and (H) in 2051,

HLT ; End of program

e) Exchange the register pairs HL and DE:
The instructi
ction XCHG exchanges the contents of HL pair with DE pair

Thatis, if (HL) = 1234 and
a - . ;
v and (DE) = ABCD, Initially, then the XCHG instruction mak
(HL) = ABCDH and (DE) = 1234 makes,
i

Y 8 v = —
——

e) Copy H and L registers to the Stack Pointer

The instruction SPHL loads the contents of the H and L registers into the Stack Pointer

register.

(SP) < (HL)

f) Exchange Stack-top with H and L

The instruction XTHL exchanges the contents of H and L registers with the contents of

memory locations pointed to by SP and SP + 1.

The contents of L register are exchanged with the contents of memory location pointed

to by the stack pointer (SP) and the contents of H register are exchanged with the contents

of the memory location (next stack location) pointed to by stack pointer plus one (SP)' +1.

(L) <€ ((SP))

(H) &« ((SP)+1)

Let (H) = 45,, (L) = 67, and (SP)=27F5,

Let the contents of memory locations pointed to by SP and SP + 1 be 22, and 33

respectively.
ie, ((SP)) = (27F5,) = 22,
(SP) +1) =(27F6,) =33,
When the instruction XTHL is executed, the HL register contents and memory contents

change. But the SP contents do not change.

e, (H) = 33,
(L) =22,
((SP)) = (27F5,) = b7
(SP)+1) = (27F6,) = 45,

5.2 BRANCH INSTRUCTIONS .
We have mentioned earlier, that the machine codes of the instructions of a program a,,

stored in successive memory locations. The program counter of 8085 sends out the addreg,

of the memory location for a byte to be read or written into. In the mean time, the progra,
counter is automatically incremented and is ready with the address of the next rr?emOr,
location. On certain occasions, the normal sequence has to be altered by changing the

contents of the program counter. A number of instructions like jump, call, restart, move

to PC etc., are available. Let us discuss them one by one.

a) Jump Instruction
The jump instruction is of two types, namely
i) Unconditional jump and

ii) Conditional jump

i. Unconditional jump

The unconditional jump instruction is of the form JMP Addr 16. This is a 3-byte
instruction with the first byte containing the opcode (machine code) of the instruction and
bytes 2 and 3 containing the address. When loaded in memory, the lower order address is
loaded first, followed by higher order byte. |

When the instruction JMP 2250, is executed, the address 2250, is loaded into the
program counter. The 8085 will now pick up its next instruction from the memory at this
new address and continues to execute the instructions sequentially from this address.

The instruction JMP 2250, is loaded in the memory at address 2000, as
H '

2000 | C3
2001 | 50
2002 | 22

‘he jump is unconditional and does not depend on the status of the flags

While writing programs, the jump instruction can be follo
'tual address. That is, instead of writing

JMP 2250, we can write

INSTRUCTION SET OF 8085 - 11

9y

JMP AHEAD or JMP START or JMP LOOP1 etc.,
where AHEAD or START or LOOP1 are the labels used. While loading the memory with

machine codes, the label is converted into address and entered

ji. Conditional Jump:

Conditional jump instructions such as JZ (jump on zero) or JC (jump on carry) will
cause the program counter to be loaded with the 16-bit address given in the instruction
only if the specified condition is true (Z = 1 or Cy = 1). Otherwise, the execution of instructions

will continue in its normal sequence.

The various conditional jump instructions are listed below.

JZ
JNZ
JC
JNC
JPE
JPO
JM
JP

jump if zero flag is set. Z=1.

jump if zero flag is not set. Z=0.

jump if carry flag is set. Cy=1.

jump if carry flag is not set. Cy=0.

jump if parity flag is set. P =1. Even parity.
jump if parity flag is not set. P=0. Odd parity.
jump if sign flag is set. , S=1. MSBbit=1.
jump if sign flag is not set. - §=0. MSBbit=0.

Let us take one or two simple programs to understand the conditional jump instructions

and to show how they are coded and loaded in memory.

Example 5.3:

Write a program to add two bytes and store the result in a memory location 2050,,. Also

store the carry as 1 if there is a carry, in the next memory location. If there is no carry, store

a 0 in the next location.

Solution:

MVI C,00
MVI A, X
MVI B,Y
ADD B
JNC AHEAD

/

/

: C = 0,to indicate no carry

+ First number in A

Second number in B
Add the numbers

No carry, jump to store zero

Mem.Addr

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
200A
200B
200C
200D
200E
200F
2010
2011
2012

C

AHEAD: STA 2050
MOV A,C
STA 2051
HLT

Hex.code

OE
00
3E
X

06
: &

80
D2
0B
20
0C
32
50
20
79
32
51
20
76

/

’

7/

. Store carry at 2051H

Tf there is a carry.

Store sum at 2050H

Bring carry St

Label

AHEAD:

; End of program

The same program with memory address, hex code and mnemonics is shown below,

Opcode

MVI
MVI
MVI
ADD

JNC

INR
STA

MOV
STA

HLT

In this '
IS program, AHEAD is the labg| of the address at which the instruction STA 2050
stored. X and Y are 8-bit data to be entereg in the memory H

Let us take one more example to understand the c;onditional jumps

atus to accumulator

c =41

Operands

C,00

A, X

B)Y

AHEAD

2050

AC
2051

Example 5.4:
Write a program to transfer hundred bytes stored in one block of memory with starting

address 2100,, to another block of memory with starting address 2400, .

Solution:

It is a program for ‘block transfer’. Hundred bytes are to be transferred and so we need

a counter. Let us use C register as counter and load the C register with a count equal to
100 in decimal which is also equal to 64,. We will transfer a byte from the first location in
the first memory block to the first location in the second memory block using data transfer
instructions, that we have already seen. After each transfer, the count in C register is
decremented by one. The transfer is repeated for the succeeding memory locations till the

count in C register becomes zero.

LXI H,2100, ; Starting address of first block in HL
LXI D,2400, ; Starting address of second block in DE

MVI C, 64, ; Count in C = 64H
pDO: MOV A,M ; Take a byte from memory addressed by
. ; HL to A
STAX D ; Transfer the byte in A to memory
P addréssed by DE |
INX H ; Increment the address in HL
INX D ; Increment the address in DE
DCR C ; Decrement count by 1
JNZ DO ; If (C)is not zero, continue in DO
HLT ; If (C) is equal to zero, end task

Here, DO is the label of the address at which the instruction MOV A M is stored.

b) Call and Return instructions
The CALL and RET instructions are discussed under branch instructions because these
instructions also cause branching from regular sequence. First, let us get used to the words

‘subroutines’ or subprograms.

—

i i arer
While writing a program, let us assume that a group of instructions epeatedly Useg
proach, the maChine

a number of times at different points in the program. If we use this ap

codes of the instructions are entered repeatedly and the memory space required wj by
large. This problem is solved in a very elegant way. The group of instructions which arg to

be repeatedly used are stored in a separate memory block, only once. This group
instructions are now called subprograms or subroutines. From different points from the Maip
program, the subroutine is ‘called’. Now the processor branches to execute the instmctions
in the subroutine. At the end of the subroutine, the processor has to ‘return’ back to th,
main program. While returning back to the main program, the processor has to come bagy
to the point from where it has branched out. The procedure is achieved using the CA[|
and RET instructions with the help of stack operations. The subroutine can be called any

number of times from the main program. This is shown in Fig (5.1).

MAINLINE
INSTRUCTIONS
SUBROUTINE
- M
RET
SUBROUTINE

CALL

]

Fig (5.1) Calling subroutines

- ——

103

L
T —

INSTRUCTION SET OF 8085 - 1
The subroutines can also be nested as shown in Fig (5.2). This means, one subroutine

calls another subroutine.

MAINLINE
INSTRUCTIONS

SUBROUTINE 1 SUBROUTINE 2

CALL 1 CALL 2

RET RET

Fig (5.2) Nested Subroutines

But, we must be careful to have the RET instruction at the end of each subroutine. All

return addresses are sfored in the stack.

The call and return instructions are of two types, namely

i) Unconditional Call and Return.
i) Conditional Call and Return.

i. Unconditional Call and Return instructions

The unconditional call instruction is of the form,

CALL Addr16
(CD) for the

This is a three byte instruction. The first byte is the Hex code
t starting address

CALL instruction. The second and the third byte gives the 16-bi
of the subroutine. When the processor encounters the CALL instruction, the program counter

is modified to contain the starting address of the subroutine. Now, the instructions unde,

the subroutine are executed sequentially. At the end of the subroutine, to return back to

the main program, the RET instruction is given.

We can see that, when we want to go to a subprogram, we give the address of the
subprogram. But, when we want to return to the main line program, we just give the RET
instruction and not the address of the instruction in the main program. This is made possible |
in all microprocessors by making use of the stack. Before modifying the contents of the
program counter with the address of the subroutine, the address of the next instruction in
the main program is saved in the stack. Stack and related instructions are discussed in
Sec 5.3. However, let us see how stack is used during CALL and RET instructions with an

example.

In the programmer’s model of 8085, we have taken the RAM area from 2000, to 27FF
The last few locations can be used for stack related operations. The first step is to initialize
the top of the stack with an instruction LXI SP, Addr 16. Let us choose the address as
27F0,, for stack top. We initialize the stack top with the instruction,

LXI SP,27F0,

Let us call a subroutine entered at location 2050, from the main memory location 2010,
The instruction CALL 2050, is coded as CD, 50, 20 and entered at locations 2010,,, 2011,
2012,.. Therefore the address of the next instruction after the CALL instruction is 2013, This
address is referred to as the ‘return address’. This address is stored in two locations in the
stack. The stack pointer (SP) is decremented by 1 to 27EF and the high order return address
20,, is stored here. The stack pointer is decremented once again to 27EE,, and the low order |

retun address 13 is stored here, The new value in the stack pointer is 27EE,,. This is shown |
in Fig (5.3).

!

INSTRUCTION SET OF 8085 - 11 05
1

Main program 3 Stack
Address Hex code address Hex code
2010 CD 27ED XX
2011 50 Top of stack : | 27EE 13
2012 20 27EF 20
2013 next instruction 27F0 XX

Fig (5.3)

The sequence of operations during the CALL instruction can be represented as follows.

(SP)-1) € (PChigh)
(SP)-2) € (PClow)
(SP) & (SP)-2
(PC) & call address

While writing programs, the CALL instruction can be followed by a label instead of the

actual address. That is, instead of writing

\

CALL 2250, we can write

CALL DELAY or CALL MULT! or CALL BCD

where DELAY, MULTI and BCD are the labels used. While loading the memory with machine

codes, the label is converted into address and entered.

At the end of the subroutine, the RET instruction is given. We have seen that now the
stack top is 27EE,,. The return address 2013, is safely at 27EE, and 27EF,. The contents

of memory pointed by SP is transferred as a lower byte to the PC. The SP is incremented

tion pointed to by SP + 1 is transferred to as @

by 1 and the contents of the memory loca
ented once again so that

higher byte to the program counter. The stack pointer is increm

SP + 2 is the new value for the stack pointer.

The sequence of operations during the RET instruction can be represented as follows

(PClow) € ((SP))
(PChigh) € ((SP)+1)
(SP) € (SP)+2

ii. Conditional Call and Return
Conditional call instructions such as CZ (call on zero) or CC (call on carry) will cause

the program counter to be loaded with the 16-bit address given in the instruction only if the
specified condition is true (Z = 1 or Cy = 1). Otherwise, the execution of instructions wi|

continue in its normal sequence.

The various conditional call instructions are listed below.

Cz call if zero flag is set. Z=1.
CNZ call if zero flag is not set. Z=0.
CC call if carry flag is set. Cy=1.

CNC call if carry flag is not set. Cy=0.

CPE call if parity flag is set. P=1. Even parity.
CPO call if parity flag is not set. P=0. Odd parity.

CM call if sign flag is set. S=1. MSB' bit = 1.
CP call if sign flag is not set. 8§=0Q MSBhbit=0.

Return to the main program can also be conditional. Conditional return instructions such
as RZ (return on zero) or RC (return on carry) will céuse the program counter to be
loaded with the 16-bit address from the stack only if the specified condition is true
(Z=1o0rCy =1). Otherwise, the execution of instructions will continy

. e in its normal sequence
in the subroutine.

The various conditional return instructions are listed below.

RZ return if zero flag is set. Z=1.

RNZ return if zero flag is not set. Z=0.

RC return if carry flag is set. Cy=1.

RNC return if carry flag is not set. Cy =0.

RPE return if parity flag is set. P =1. Even parity.
RPO return if parity flag is not set. P =0. Odd parity.
RM return if sign flag is set. S=1. MSBbit=1.
RP return if sign flag is not set. S=0. MSBbit=0.

c) Restart Instructions:

Restart instructions (RST n) are special one byte unconditional call instructions. As in
the case of call instruction, the content of the program counter (corresponding to the return
address) is saved in the stack. Then the program jumps to the instruction starting at the
restart location. There are eight restart instructions, RST 0to RST 7. That is, the contents

of the program counter is changed to one of the restart addresses.

The eight restart instructions and the corresponding addresses to which the control is

transferred are given below.

Instruction Addr to which control is transferred
RST O 0000,

RST 1 0008,

RST 2 0010,

RST 3 0018,

RST 4 0020,

RST 5 0028,

RST 6 0030,

RST 7 0038,

The address calculation is simple. For RST n, the address is 8 x n in Hex. For example.

for RST 5. the restart address is 5 x 8 = 40 in decimal which is equal to 28,,.

The restart instructions are mostly used with interrupts. discussed in Chapter 10.

The instruction PCHL moves the contents of HL register pair to the program counter |

(PC high) ¢« (H)
(PC low) <« (L) ‘

Following the execution of this instruction, program execution jumps to the address storeq

in HL register pair. Therefore, this instruction is also a type of branch instruction.

5.3 STACK AND STACK RELATED INSTRUCTIONS |

A small area of the read/write memory RAM can be called as stack. When we write
programs, the registers may have to be used again and again. The content of a registe
has to be saved for future use before using the same register in some other part of the
program. The memory connected to 8085 has thousands of locations and the last fey
locations of the memory can be used to save the register contents. Also, when the processor
executes a CALL instruction and during interrupts, the processor needs a few memory
locations to store the ‘return address’. For all these requirements, we can set aside a small
portion of RAM, which is called as stack. Since, only the tail end of RAM is used for stack

operations, it will not clash with the area where the programs are entered.

In the programmer's model of 8085, we have taken the RAM to have an address range
of 2000,, to 27FF .. The machine codes of the instructions of the programs are entered in

successive locations from 2000, onwards. With each entry of machine code in the memory,
the memory address goes on increasing.

We can choose the very last location, 27FF, and a few locations below that for the
stack operations. This area is used to save the register contents and retrieve them when

needed. The same area is used to save the ‘return address'’ during call instruction and durind
interrupts.

First, the stack is initialized with the instruction LXI SP, addr 16. Let us initialize the
stack with the instruction,

LXI SP, 2800,

INSTRUCTION SE1 OF 8085 - 11

Though the very last RAM location in our example is 27FF,, we have used the address

as 2800, It is because. the processor decrements the stack pointer once, before saving
the register content at that address. Therefore, the first byte will be stored at address 21FF..

To save the registers PUSH instruction is used. To retrieve the contents POP instruction

is used.

PUSH Instruction:

The PUSH instruction is used to push or store a register pair on stack. For example,

he instruction. PUSH B pushes the contents of BC register pair on the stack. The sequence
of operations for PUSH B is,
i) The SP is decremented once and the contents of B register is stored in the memory
pointed to by (SP) — 1.

i) The SP is decremented once again and the contents of C register is stored in the

memory location pointed to by (SP)-2 '
i)y The (SP)—2 becomes the new value of SP.

Let the initial values in BC, SP and stack be as shown in-Fig (54)

) ~ Stack
B|C sP 27FE | xx
12| 34 2800 27FF | xx

Top of stack: | 2800 | xx

Fig (5.4)

tion PUSH B is executed, the contents of BC register pair is saved

Now, if the instruc
in the stack and the value in SP is decremented by 2 as shown in Fig (5.5).

Stack

8l e Top of stack:

Fig (5.5)

The sequence of operations for PUSH B can represented as,

(sP)-1) € (B)
((SP)-2) < (C)
(SP) € (SP)-2

Using the same procedure, we can push other register on to the stack.

PUSH D pushes registers D and E.
PUSH H pushes registers H and L.
PUSH PSW pushes A register and Flag register.

PSW stands for Processor Status Word or Program Status Word and represents the

contents of the accumulator and flag register. The accumulator is taken as the high register

and the flag register is taken as the low register for stack instructions.

Let us initialize the stack pointer and push all the registers. The sequence of instructions

and how the data are stored in the stack is shown below in Fig (56).

Stack
LXI SP.2800 Top of stack : 27F8 | (Flags)
PUSH B 27F9 | (A)
PUSH D 27TFA | (L)
PUSH H 27TFB | (H)
PUSH PSW 27FC | (E)
27TFD | (D)
2IFE 1 (C)
27FF | (B)
2800 XX
Fig (5.6)
By looki t Fig (5.
y ing at Fig (5.6), we can see that, every time a push operation is performed, ‘stack

grows' but in the ‘downward’ direction (as the address of the memory goes on d ing)
n decreasing):

POP Instruction:

The POP instruct : |
10N 1s used to transfer two bytes from the top of the stack to the register

pair specified in the instruction. For example, POP B transfers the contents of memory

pointed by SP to C register and the contents of memory pointed by SP + 1 to B register

Let the initial values in BC. SP and stack be as shown in Fig (5.7)

Stack

8| C 5
- Top of stack:| 27F6 |89
- e Zrre 27F7 |67
27F8: | xx

Fig (5.7)

Now, if the instruction POP B is executed. the contents of BC register pair is retrieved

from the stack and the value in SP is incremented by 2 as shown in Fig (5.8)

Stack
B| C SP 27F6 | 89
67) 89 27F8 27F7 | 67
Top of stack: | 27r8 | xx

Fig (5.8)

The sequence of operation for POP B can be represented as,
(C) < ((SP))
(B) &« ((SP)+1)
(SP) €« (SP)*2

The instruction POP D retrieves the contents of DE.

The instruction POP H retrieves the contents of HL.

The instruction POP PSW retrieves the contents of accumulator and flags.

s are saved and retrieved on a Last In First Out (LIFO) basis. This means

The register

the registér pair that is pushed in last must be popped out first.

broutine from the main progr am. We can sayg

Let us assume that we want to call a su
PUSH instructions and then inclug,

all the registers in the beginning of the subroutine using ‘
the instructions of the subroutine. The registers can be retrieved using POP instructiong

before returning to the main program. This is shown below.

Main Program Subroutine
PUSH B
PUSH D
PUSH H

PUSH PSW

RET

As seen earli i i RET e

t . earlier (Section 5.2.b), stack is used during CALL and RET instructions. When

he microprocessor is interrupted usin i TR, RST R. 6.5
g one of the interrupt pi

) t Pt pins (INTR, RST 5.5, RST 6.5,

RST.7.5 and TRAP), the processor branches to execute a subroutine which is called n

as a

Interrupt Service Routi -
| utine (ISR). During this process also, the stack is
address’. Interrupts are discussed in Chapter 10 used to save the ‘return

Example 5.4:

Specify the register contents as the following instructions are executed one after another.

LXI SP,2750,
LXI B,1234
LXI D,5678,
PUSH B
PUSH D
POP B
POP D
Solution:
LXI SP,2750H / Load SP with 2750,
LXI B, 1234, ; Load BC with 1234,
LXI D, 5678, ; Load DE with 5678,
PUSH B ; Save (BC) = 1234, in stack
PUSH . D ; Save (DE) = 5678, in stack
POP B ; Retrieve 5678, from top of stack and
; put it ‘in BC
POP D i ‘Retrieve 1234, from top of stack and

; put it in DE

This program has actually ekchanged the contents of register pairs BC and DE.

5.4 1/0 AND MACHINE CONTROL INSTRUCTIONS

a) /O Instructions

To communicate with the outside world, the processor uses input ports and output ports.
The 8085 uses IN instruction to input a byte from an input port to the accumulator.
An OUT instruction is used to output a byte from the accumulator to the output port. These

two instructions will be used in the /O Interface, which is dealt in Chapter 9.

b) Machine Control Instructions
Machine control instructions only control the processor operations and do not perform

any operation on data. They are all single byte instructions.

i. Halt Instruction
The HLT instruction stops the microprocessor and no further instructions are executeq
The registers and flags are not affected. The address and data buses are placed in high

impedance state.
The processcr can come out of the halt state only by resetting the processor or by

applying interrupt.

ii. No operation Instruction

The instruction NOP performs no operation. The processor fetches the Hex code of the
instruction NOP from the memory and decodes the instruction but no operation is executed.
The registers and flags are not affected.

NOP instructions can be introduced in delay loops to increase the T-states.
(Refer Chapter 7). Also, NOP instructions can be introduced as dummy instructions, so that
if we have to insert an instruction, it can be inserted in the place of NOP instruction. Adding

or removing NOP instruction does not affect the program.

fii. Interrupt Related Instructions

There are four Interrupt related instructions in 8085.
a) El-Enable Interrupts

b) DI - Disable Interrupts

c) SIM - Set Interrupt Mask

d) RIM - Read Interrupt Mask

VI these instructions are discussed in Chapter 10, where 8085 interrupts are introduced.

5.4 THE 8085 ADDRESSING MODES
We have seen that an assembly language instruction is made up of an operation code

and operand/s. When 8085 executes an instruction, it performs a specified function on data
(called operand/s). These data may be part of an instruction, reside in one of the internal
registers or stored at an address in memory or I/0. The various formats of specifying the

operands are called the addressing modes. The 8085 uses the following addressing modes:

i) Direct addressing
ii) Register addressing
iii) Register indirect addressing
iv) Immediate addressing
V) Implied addressing / Implicit addressing

i. Direct Addressing

In direct addressing mode, the address of the operand (data) is given in the instruction
itself.
" Examples:

1. STA 2050,
In this instruction, 2050, is the memory address where the data is to be stored, the

address is given in the instruction itself.

2.IN FF,
In this instruction, FF is the address of the input port from where data is brought in to

the accumulator.

ii. Register Addressing
In registei addressing mode, the operands are general purpose registers.

Examples:

1.MOV B,C
Both the source and destination operands are specified in the instruction.

2.ADD B
Here, the register B is the source operand.

lii. Register Indirect Addressing 3 ' '
In this addressing mode, the address of the operand is not specified directly but given

indirectly in a register pair.
Example:

1.MOV AM N | |
This instruction moves a data from the memory whose address is in HL register pair

accumulator.

2.STAX B
This instruction moves the content of the accumulator to memory whose address is given

in BC register pair.

iv. Immediate addressing

In this mode, an 8-bit or 16-bit data is specified as part of the instruction. When entereqd
in memory, the data is entered immediately following the hexcode of the instruction.

1.MVI A 25

The immediate data here is 25,..

2.LXI H, 2050, .
In this instruction the immediate 16-bit data is 2050,,.

v. Implied Addressing / Implicit Addressing
In this mode, the instructions operate on the contents of the accumulator and has only
the opcode field. (No operand field)

Example:
1. RLC

This instruction rotates the contents of the accumulator |eft by one bit position without
>arry. Here the register used is implied as accumulator.

2. CMA

This instruction complements the accumulator

Practice Questions:

1. What is the function of the MOV instruction in the 8085 microprocessor?

2. Explain the difference between MVI1 and MOV instructions in 8085.

3. What does the ADD instruction do in the 8085 microprocessor?

4. What is the function of the SUB instruction in the 8085 microprocessor?

5. Explain the purpose of the ANA instruction in the 8085 microprocessor.

6. What is the role of JMP instruction in the 8085 microprocessor?

7. What does the JC instruction do in the 8085 microprocessor?

8. What is the significance of the CALL instruction in the 8085 microprocessor?
9. What does the POP instruction do in the context of stack operations?

10. What is the purpose of the IN instruction in the 8085 microprocessor?
Additional Resources :

https://www.geeksforgeeks.org/addressing-modes-8085-microprocessor/

https://www.youtube.com/watch?v=RyMT7GznQUo

References:

1. Fundamentals of Microprocessor 8085-V.Vijayedran

https://www.geeksforgeeks.org/addressing-modes-8085-microprocessor/
https://www.youtube.com/watch?v=RyMT7GznQUo

