

**MARUDHAR KESARI JAIN COLLEGE FOR WOMEN
(AUTONOMOUS)**

Vaniyambadi – 635 751

PG & Research Department of Mathematics

for

Postgraduate Programme

Master of Science in Mathematics

From the Academic Year 2024 - 25

Semester-III						
24PMAC31	CC-8 Complex Analysis	3	1	1	1	5
24PMAC32	CC-9 Probability Theory	3	1	1	1	4
24PMAC33	CC-10 Topology	3	1	0	1	4
24PMAC34	CC-11 Mechanics	3	1	1	1	4
24PMAE31 / 24PMAE32	EC-5 Fluid Dynamics/ Algebraic Number Theory	2	0	1	1	3
24PMAS31	SEC-2 Research Tools and Techniques	2	0	0	1	2
24PMAIN31	Internship	0	0	0	0	2
					30	24

Semester-IV						
24PMAC41	CC-12 Functional Analysis	3	1	1	1	5
24PMAC42	CC-13 Differential Geometry	3	1	1	1	5
24PMAC43	CC-14 Project	0	0	5	1	5
24PMAE41/ 24PMAE42	EC-6 Resource Management Techniques / Financial Mathematics	2	1	1	1	4
24PMAP41	PEC-1 Stochastic Process	2	0	0	1	2
24PMAL41	SLC-1 Mathematical Modelling	2	0	1	1	2
					30	23
	Total Credits		90+2*			

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Nanmudalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory. To qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

CC	Core Course	14
EC	Elective Paper	6
SEC	Skill Enhancement Course	2
AEC	Ability Enhancement Compulsory Courses	1
VE	Value Educations	1
	Internship	1
PEC	Professional Enhancement Course	1
SLC	Self-Learning Course	1

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC31	Complex Analysis	Core Course-8	3	1	1	1	5	6	25	75	100

Learning Objectives

LO1	To analyze and evaluate local properties of analytical functions and definite
LO2	To demonstrate the concept of the general form of Cauchy's theorem.
LO3	To describe the concept of definite integral and harmonic functions.
LO4	To develop Taylor and Laurent series
LO5	To learn the infinite products, canonical products and Jensen's formula.

Unit	Content	Hours
1	Cauchy's Integral Formula The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Local Properties of analytical Functions: Removable Singularities-Taylor's Theorem – Zeros and poles – The local Mapping – The Maximum Principle. Chapter 4 : Section 2 : 2.1 to 2.3 Chapter 4 : Section 3 : 3.1 to 3.4	18
2	The General form of Cauchy's Theorem Chains and cycles- Simple Connectivity - Homology - The General statement of Cauchy's Theorem - Proof of Cauchy's theorem - Locally exact differentials- Multiply connected regions - Residue theorem – The argument principle. Chapter 4 : Section 4 : 4.1 to 4.7 Chapter 4 : Section 5: 5.1 and 5.2	18
3	Evaluation of Definite Integrals and Harmonic Functions Evaluation of definite integrals - Definition of Harmonic function and basic properties - Mean value property - Poisson formula. Chapter 4 : Section 5 : 5.3 Chapter 4 : Sections 6 : 6.1 to 6.3	18
4	Harmonic Functions and Power Series Expansions Schwarz theorem - The reflection principle – Weierstrass's theorem – Taylor's Series – Laurent series. Chapter 4 : Sections 6:6.4 and 6.5 Chapter 5 : Sections 1:1.1 to 1.3	18
5	Partial Fractions and Entire Functions Partial fractions -Infinite products – Canonical products – Gamma Function- Jensen's formula – Hadamard's Theorem. Chapter 5 : Sections 2: 2.1 to 2.4 Chapter 5 : Sections 3:3.1 and 3.2	18
	Total	90
Theory 80% Problem- 20%		

CO	Course Outcomes									
	The Students will be able to									
CO1	Analyze and evaluate local properties of analytical functions and definite integrals									
CO2	Work out on general form of Cauchy's theorem and multiply connected regions									
CO3	Evaluate definite integral and harmonic functions.									
CO4	Apply Taylor and Laurent series.									
CO5	Examine the infinite products, canonical products and Jensen's formula.									
Textbooks:										
1	Lars V. Ahlfors, <i>Complex Analysis</i> , (3rd edition) McGraw Hill Co., New York, 1979									
Reference Books:										
1	H.A. Presly, <i>Introduction to complex Analysis</i> , Clarendon Press, oxford, 1990									
2	J.B. Conway, <i>Functions of one complex variables</i> Springer - Verlag, International student Edition, Narosa Publishing Co.1978									
3	E.Hille, <i>Analytic function Theory</i> (2 vols.), Gonm and Co, 1959.									
4	M.Heins, <i>Complex function Theory</i> , Academic Press, New York, 1968.									
5	James Ward Brown, R.V. Churchil, <i>Complex Variables and Applications</i> , McGraw Hill Education Private Limited,8 th Edition, 2014									
Web resources:										
1	http://mathforum.org									
2	http://www.opensource.org									
3	http://en.wikipedia.org									

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	2	3	3	2	2
CO2	2	2	3	2	3	3	2	2	3	2	3
CO3	3	2	3	2	3	3	3	3	3	2	2
CO4	2	2	3	2	3	3	2	2	3	2	3
CO5	3	2	2	3	3	3	2	3	3	2	2
Total	13	10	14	11	15	15	11	13	15	10	12
Average	2.6	2	2.8	2.5	3	3	2.5	2.6	3	2	2.4

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC32	Probability Theory	Core Course-9	3	1	1	1	4	6	25	75	100

Learning Objectives

LO1	To understand Random Events, Random Variables, to describe Probability, to apply Baye's to define Distribution Function, to find Joint Distribution function, Marginal Distribution and Conditional Distribution function.
LO2	To define Expectation, Moments and Chebyshev's Inequality, to solve Regression of the first and second types.
LO3	To learn Characteristic functions, distribution function, to find probability generating functions
LO4	To describe One point, two-point Binomial distributions, to solve problems of Hyper geometric and Poisson distributions, to define Uniform, normal, gamma, Beta distributions.
LO5	To discuss Stochastic convergence, Bernaulli's law of large numbers, to elaborate Convergence of sequence of distribution functions, to prove Levy-Cramer Theorems and de Moivre-Laplace Theorems, to explain Poisson, Chebyshev's, Khintchine Weak law of large numbers, to explain and solve problems on Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.

Unit	Content	Hours
1	Random Events and Random Variables Random events –Probability axioms – Combinatorial formulae – conditional probability –Baye's Theorem – Independent events – Random Variables –Distribution Function – Joint Distribution – Marginal Distribution –Conditional Distribution – Independent random variables – Functions of random variables. Chapter 1: Sections 1.1 to 1.7 Chapter 2 : Sections 2.1 to 2.9	18
2	Parameters of the Distribution Expectation- Moments –The Chebyshev's Inequality – Absolute moments – Order parameters –Moments of random vectors – Regression of the first and second types. Chapter 3 : Sections 3.1 to 3.8	18
3	Characteristic functions Properties of characteristic functions – Characteristic functions and moments – semi invariants –characteristic function of the sum of the independent random variables – Determination of distribution function by the Characteristic function –Characteristic function of multidimensional random vectors –Probability generating functions. Chapter 4 : Sections 4.1 to 4.7	18
4	Some Probability distributions One point and two point distribution ,Binomial – Polya – Hypergeometric – Poisson (discrete) distributions –Uniform – normal- gamma – Beta – Cauchy and Laplace (continuous) distributions. Chapter 5 : Section 5.1 to 5.10	18

5	<p>Limit Theorems Stochastic convergence – Bernaulli's law of large numbers – Convergence of sequence of distribution functions –Levy-Cramer Theorems – De Moivre-Laplace Theorem – Poisson, Chebyshev's, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel-Cantelli Lemma – Kolmogorov Inequality and Kolmogorov Strong Law of large numbers. Chapter 6: Sections 6.1 to 6.4, 6.6 to 6.9, 6.11 and 6.12. (Omit Sections 6.5, 6.10)</p>	18
	Total	90
Theory 80% Problem 20%		

CO	Course Outcomes	
	The Students will be able to	
CO1	Apply Random Events, Random Variables and distribution functions.	
CO2	Work on Expectation, Moments and Chebyshev's Inequality and Regression types.	
CO3	Determine Characteristic functions, distribution function and probability generating functions	
CO4	Solve problems on Binomial distributions, Hypergeometric and Poisson distributions.	
CO5	Evaluate Stochastic convergence, Bernaulli law of large numbers, Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.	
Textbooks:		
1	M.Fisz, <i>Probability Theory and Mathematical Statistics</i> , John Wiley and Sons, New York,1963.	
Reference Books:		
1	R.B. Ash, <i>Real Analysis and Probability</i> , Academic Press, New York, 1972	
2	K.L. Chung, <i>A course in Probability</i> , Academic Press, New York, 1974	
3	R.Durrett, <i>Probability: Theory and Examples</i> , (2nd Edition) Duxbury Press, New York, 1996.	
4	V.K. Rohatgi, <i>An Introduction to Probability Theory and Mathematical Statistics</i> , WileyEastern Ltd., New Delhi, 1988(3rd Print).	
5	S.I. Resnick, <i>A Probability Path</i> , Birhauser, Berlin, 1999.	
Web resources:		
1	http://mathforum.org/	
2	www.opensource.org/	

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	2	3	3	2	2
CO2	2	2	3	2	3	3	2	2	3	2	3
CO3	3	2	3	2	3	3	3	3	3	2	2
CO4	2	2	3	2	3	3	2	2	3	2	3
CO5	3	2	2	3	3	3	2	3	3	2	2
Total	13	10	14	11	15	15	11	13	15	10	12
Average	2.6	2	2.8	2.5	3	3	2.5	2.6	3	2	2.4

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									Internal	External	Total
24PMAC33	Topology	Core Course-10	3	1	0	1	4	5	25	75	100

Learning Objectives

LO1	To define and illustrate the concept of topological spaces, open sets, neighbourhood, interior, exterior, closure and their axioms.
LO2	To understand continuity, compactness, connectedness, homeomorphism and topological properties.
LO3	To analyze and apply the topological concepts in Functional Analysis
LO4	To determine a point in a topological space is either a limit point or not for a given subset of a topological space.
LO5	To develop qualitative tools to characterize connectedness, compactness, second countable, Hausdorff and develop tools to identify when two are equivalent (homeomorphic).

Unit	Content	Hours
1	Topological spaces Topological spaces – Basis for a topology – The order topology – The product topology on $X \times Y$ – The subspace topology – Closed sets and limit points. Chapter 2 : Sections 12 to 17	15
2	Continuous functions Continuous functions – The product topology – The metric topology. Chapter 2 : Sections 18 to 21	15
3	Connectedness Connected spaces- connected subspaces of the Real line – Components and local connectedness. Chapter 3: Sections 23 to 25.	15
4	Compactness Compact spaces – compact subspaces of the Real line – Limit Point Compactness – Local Compactness. Chapter 3: Sections 26 to 29.	15
5	Countability and Separation Axiom: The Countability Axioms – The separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn Metrization Theorem – The Tietze extension theorem. Chapter 4 : Sections 30 to 35.	15
	Total	75
Theory 100%		

CO	Course Outcomes									
	The Students will be able to									
CO1	Study the concept of topological spaces, open sets, neighbourhood, interior, exterior, closure and their axioms.									
CO2	Understand continuity, compactness, connectedness, homeomorphism and topological properties									
CO3	Apply the topological concepts in Functional Analysis									
CO4	Evaluate whether a point in a topological space is either a limit point or not for a given subset of a topological space									
CO5	Review qualitative tools to characterize connectedness, compactness, second countable, Hausdorff.									
Textbooks:										
1	James R. Munkres, <i>Topology</i> (2nd Edition) Pearson Education Private. Ltd., Delhi-2010 (Third Indian Reprint)									
Reference Books:										
1	J.Dugundji, <i>Topology</i> , Prentice Hall of India, New Delhi, 1975.									
2	George F.Simmons, <i>Introduction to Topology and Modern Analysis</i> , McGraw Hill Book Co., 1963									
3	J.L. Kelly, <i>General Topology</i> , Van Nostrand, Reinhold Co., New York.									
4	L.Steen and J.Subhash, <i>Counter Examples in Topology</i> , Holt, Rinehart and Winston, New York,1970.									
5	S.Willard, <i>General Topology</i> , Addison - Wesley, Mass., 1970									
Web resources:										
1	http://mathforum.org									
2	http://www.opensource.org									
3	http://en.wikipedia.org									

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	3	2	3	2	2
CO2	2	2	3	2	3	3	3	2	3	2	3
CO3	3	2	3	2	3	3	3	2	3	2	2
CO4	2	2	3	2	3	3	3	2	3	2	3
CO5	3	2	3	3	3	3	3	2	3	2	2
Total	13	10	15	11	15	15	15	10	15	10	12
Average	2.6	2	3	2.2	3	3	3	2	3	2	2.4

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC34	Mechanics	Core Course-11	3	1	1	1	4	6	25	75	100

Learning Objectives

LO1	To understand mechanical systems under generalized coordinate systems
LO2	To apply mechanics techniques in virtual work-Lagrange Equations
LO3	To develop students ability to deal with Energy and momentum
LO4	To learn the concept of Hamilton -Jacobi Theory.
LO5	To discuss the Canonical Transformation.

Unit	Content	Hours
1	Mechanical Systems The Mechanical system-Generalized coordinates- Constraints-Virtual work-Energy and Momentum. Chapter1: Sections 1.1 to 1.5	18
2	Lagrange's Equations Derivation of Lagrange's equations- Examples - Integrals of motion. Chapter 2: Sections 2.1 to 2.3	18
3	Hamilton's Equations Hamilton's Principle - Hamilton's Equation - Other variational principles. Chapter4: Sections 4.1 to 4.3	18
4	Hamilton-Jacobi Theory Hamilton's Principle function-Hamilton-Jacobi Equation-Separability. Chapter5: Sections 5.1 to 5.3	18
5	Canonical Transformation Differential forms and generating functions - Lagrange and Poisson brackets. Chapter 6: Sections 6.1 , 6.3 (Omit 6.2)	18
	Total	90

CO	Course Outcomes							
	The Students will be able to							
CO1	Understand mechanical systems under generalized coordinate systems							
CO2	Apply mechanical techniques in virtual work by Lagrange							
CO3	Evaluate energy and momentum in Hamilton's Equations							
CO4	Understand Hamilton-Jacobi theory							
CO5	Work on Canonical Transformation.							
Textbooks:								
1	D.T. Greenwood, <i>Classical Dynamics</i> , Prentice Hall of India, New Delhi, 1985.							
Reference Books:								
1	H.Goldstein, <i>Classical Mechanics</i> ,(2nd Edition) Narosa Publishing House, New Delhi,1950.							
2	N.C.Raneand P.S.C.Joag, <i>Classical Mechanics</i> , Tata McGraw Hill, 1991.							
3	J.L.Synge and B.A. Griffith, <i>Principles of Mechanics</i> (3rd Edition) McGraw Hill Book Co.,New York, 1970.							
4	French and Ebison, <i>Introduction to Classical Mechanics</i> , Kluwer Academic Publishers							
5	George Hrabovsky, <i>Classical Mechanics</i> , Penguin Books							
Web resources:								
1	https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/							

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	3	3	3	3
CO2	2	3	2	3	3	2	3	2	2	3	2
CO3	3	3	2	3	2	2	2	3	3	3	2
CO4	2	2	2	2	3	2	2	3	2	2	3
CO5	3	3	2	3	2	2	3	2	2	3	2
Total	13	13	11	13	12	10	12	13	12	14	12
Average	2.6	2.6	2.2	2.6	2.4	2	2.4	2.6	2.4	2.8	2

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	
24PMAE31	Fluid Dynamics	Elective Course-V	2	0	1	1	3	4	25	75	100
Learning Objectives											
LO1	To understand the concepts of kinematics of fluids in motions										
LO2	To find the pressure at a point in a moving fluid										
LO3	To discuss Stokes stream function.										
LO4	To analyze complex velocity potential for two dimensional flows										
LO5	To derive the Navier – Stokes equations of motion of a Viscous fluid										
Unit	Content									Hours	
1	Kinematics of Fluids in Motion Real fluids and ideal fluids – Velocity of a fluid at a point, Stream lines, path lines, steady and unsteady flows –The Velocity potential –The vorticity vector – Local and particle rates of changes –Equations of continuity – Worked examples. Chapter 2: Sections 2.1 to 2.8									12	
2	Equations of Motion of a Fluid Pressure at a point in a fluid at rest – Pressure at a point in a moving fluid – Conditions at a boundary of two inviscid immiscible fluids – Euler's equation of motion –Discussion of the case of steady motion under conservative body forces. Chapter 3: Sections 3.1 to 3.4 and 3.7									12	
3	Some Three Dimensional Flows Introduction – Sources, sinks and doublets – Images in a rigid infinite plane –Axis symmetric flows – Stokes stream function. Chapter 4: Sections 4.1- 4.3, 4.5									12	
4	Some Two Dimensional Flows The stream function – The complex potential for two dimensional, irrational incompressible flow –Complex velocity potentials for standard two dimensional flows – Some worked examples – Two dimensional image systems –The Milne Thompson circle Theorem. Chapter 5: Sections 5.3 to 5.8									12	
5	Viscous Flows Stress components in a real fluid – Relations between Cartesian components of stress – Translational motion of fluid element –The co-efficient of viscosity and Laminar flow – The Navier –Stokes equations of motion of a Viscous fluid. Chapter 8: Sections 8.1 to 8.3, 8.8 and 8.9									12	
	Total									60	

Theory- 60%, Problem-40%

CO	Course Outcomes									
	The Students will be able to									
CO1	Understand the concepts of kinematics of fluids in motions.									
CO2	Evaluate the pressure at a point in a moving fluid									
CO3	Work on Stokes stream function intrinsic									
CO4	Analyze complex velocity potential for two dimensional flows									
CO5	Solve the Navier – Stokes equations of motion of a Viscous fluid									
Textbooks:										
1	F.Chorlton, <i>Text Book of Fluid Dynamics</i> , CBS Publications. Delhi, 1985									
Reference Books:										
1	R.W.Fox and A.T.McDonald. <i>Introduction to Fluid Mechanics</i> , Wiley, 1985.									
2	E.Krause, <i>Fluid Mechanics with Problems and Solutions</i> , Springer, 2005.									
3	B.S.Massey, J.W.Smith and A.J.W.Smith, <i>Mechanics of Fluids</i> , Taylor and Francis, New York, 2005 .									
4	P.Orlandi, <i>Fluid Flow Phenomena</i> , Kluwer, New Yor, 2002.									
5	T.Petrla, <i>Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics</i> , Springer,Berlin, 2004.									
Web resources:										
1	http://web.mit.edu/1.63/www/lecnote.html									

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	2	3	2	3	3	3
CO2	3	3	2	2	2	2	2	3	2	2	3
CO3	3	3	3	2	3	2	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	2	3	2	3	2
Total	15	15	14	12	14	12	13	13	13	13	14
Average	3	3	2.8	2.4	2.8	2.4	2.6	2.6	2.6	2.6	2.8

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

CO	Course Outcomes									
	The Students will be able to									
CO1	Study about rings, fields and factorization of polynomials.									
CO2	Recall on norms and traces over ring of integers.									
CO3	Solve factorization to irreducible polynomials.									
CO4	Understand Euclidean Quadratic fields									
CO5	Work on concepts of ideals.									
Textbooks:										
1	Steward and D.Tall. <i>Algebraic Number Theory and Fermat's Last Theorem</i> (3rd Edition) A.K.Peters Ltd., Natick, Mass. 2002..									
Reference Books:										
1	Z.I.Bosevic and I.R.Safarevic, <i>Number Theory</i> , Academic Press, New York, 1966									
2	J.W.S.Cassels and A.Frohlich, <i>Algebraic Number Theory</i> , Academic Press, New York, 1967									
3	R J.W.S.Cassels and A.Frohlich, <i>Algebraic Number Theory</i> , Academic Press, New York, 1967									
4	P.Samuel, <i>Algebraic Theory of Numbers</i> , Houghton Mifflin Company, Boston, 1970.									
5	A.Weil. <i>Basic Number Theory</i> , Springer, New York, 1967.									
Web resources:										
1	http://mathforum.org//									
2	http://www.opensource.org//									
3	www.mathpages.com//									

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	2	3	2	3	3	2	3	2	3
CO3	3	3	3	2	3	3	2	2	3	3	3
CO4	3	2	3	3	3	3	3	3	3	2	3
CO5	3	2	3	3	3	3	3	3	3	3	3
Total	15	12	14	14	14	15	14	13	15	13	15
Average	3	2.4	2.8	2.8	2.8	3	2.8	2.6	3	2.6	5

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAS31	Research Tools And Techniques	SEC-II	2	0	1	1	2	3	25	75	100

Learning Objectives

- LO1 To demonstrate the knowledge of Research methodology and research problem
- LO2 To create the knowledge on Research Design
- LO3 To learn the concept of measurement and scaling
- LO4 To analyze the data.
- LO5 To formulate the hypothesis and to learn the concept of critical value

Unit	Content	Hours
1	Research Methodology- Meaning-Objectives- Types- Methods. Research Problem-Definition-Techniques. Chapter 1: Section:1.1 to 1.8 Chapter 2: Section:2.1 to 2.4	9
2	Research Design-Meaning,-Features- Concepts- types- principles- Different Research Design- Principles and experimental design Chapter 3: Section:3.1 to 3.7	9
3	Measurement and Scaling-Qualitative and quantitative data- Classification, Techniques, Scaling-Classification. Chapter 5: Section:5.1 to 5.7	9
4	Data Collection-Introduction-Experiments and survey -Primary and Secondary data Chapter 6: Section:6.1 to 6.4	9
5	Testing of Hypothesis-Basic concepts-Critical region and critical value – Procedure. Chapter 10: Section:10.1 to 10.6	9
	Total	45

Theory-100%

CO	Course Outcomes	
	The Students will be able to	
CO1	Understand the knowledge of Research methodology and research problem.	
CO2	Frame the Research Designs.	
CO3	Work on measurement and scaling.	
CO4	Able to collect and classify the data	
CO5	Formulate the hypothesis and learnt the concept of critical value.	

Textbooks:

1	C.R.Kothari, Gaurav Garg, <i>Research Methodology Methods and Techniques</i> , New AgeInternational Publishers, 2019.
---	---

Reference Books:

1	Dr. Prabhat Pandey Dr. Meenu Mishra Pandey , <i>Research Methodology: Tools and Techniques</i> , Bridge Center, 2015
2	Ackoff, Russell L. <i>The Design of Social Research</i> , University of Chicago Press: Chicago, 1961
3	Allen, T. Harrell, <i>New Methods in Social Research</i> , Praeger Publication: New York, 197
4	Baker, R.P. and Howell, A.C. <i>The Preparation of Reports</i> , Ronald Press: New York, 1958.
5	Barzun, Jacques and Graff. F. <i>The Modern Researcher</i> , Harcourt, Brace Publication: New York, 1990

Web resources:

1	http://mathforum.org//
2	http://www.opensource.org//
3	www.mathpages.com//

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	2	3	2	3	3	3	3	2	3
CO2	2	3	2	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	2	3	2	2	3	3
CO4	3	2	3	3	2	3	3	2	2	3	3
CO5	2	2	3	3	3	3	2	2	3	2	2
Total	12	12	13	15	13	14	14	12	13	13	14
Average	2.4	2.4	2.6	3	2.6	2.8	2.8	2.4	2.6	2.6	2.8

3 – Strong, 2- Medium, 1- Low

II YEAR: THIRD SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAIN31	Internship		0	0	0	0	2	25	25	75	100

Learning Objectives

LO1	Engage in a professional working environment to gain hands-on experience and understand the practical applications of theoretical knowledge.
LO2	Analyze various aspects of developing computer-based solutions while fostering teamwork and collaboration.
LO3	Demonstrate proficiency in problem-solving, soft skills, and other essential abilities required for professional growth and development.
LO4	Develop additional competencies and specialized skills relevant to a chosen occupation or profession.
LO5	Enhance interpersonal, social, and communication skills to promote effective workplace interaction.

REGULATIONS

1	Every student must complete an internship program in a relevant firm, industry, or organization during the course of study to gain practical exposure.
2	After completing the second semester, the student should identify and analyze a suitable project to be undertaken during the third semester.
3	During the internship, students are expected to actively participate in assigned tasks and document the work performed throughout the training period.
4	A detailed internship report must be prepared and submitted by the student in the format prescribed by the institution.
5	The report submission will take place at the end of the third semester, followed by presentation and viva voce evaluation during the semester examination.
6	The evaluation of the internship/project work will be for 100 marks, comprising 50 internal (25 for report and 25 for viva) and 50 externals (25 for report and 25 for viva), assessed jointly by internal and external examiners. The external examiner shall be appointed from affiliated colleges or, if necessary, from within the college.
7	Students must secure at least 50% of the total marks to pass. Those who fail to meet this requirement must improve their performance and resubmit their report in the next available attempt. The final report must include all prescribed sections and be submitted to the Controller of Examinations within the specified date.

CO	COURSE OUTCOMES
CO1	Identify specific areas of interest and enhance relevant skills and competencies
CO2	Cultivate greater self-awareness while fostering respect and appreciation for others.
CO3	Develop professional work habits and attitudes essential for success in the workplace.
CO4	Recognize the significance of effective communication, interpersonal skills, and teamwork.
CO5	Promote proactive preparation to transition internship experiences and creativity into full-time employment immediately upon graduation.

Internal Marks Awarded for the Internship – 25 Marks

Component	Marks
Internship Review I (During the Beginning of The Semester)	5 Marks
Internship Review II (During the End of The Semester)	15 Marks
Progress of The Internship by the Student Participated	5 Marks

External Marks Awarded for the Internship – 75 Marks

Component	Marks
Evaluation of the Internship Report	25 Marks
Presentation	25 Marks
Viva Voce Examination	25 Marks

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC41	Functional Analysis	Core	3	1	1	1	5	6	25	75	100

Learning Objectives

LO1	To study Banach spaces and continuous linear transformations.	
LO2	To understand the concepts of Open mapping theorem and properties of Orthogonal complements.	
LO3	To learn conjugate space H^* , adjoint, self-adjoint, normal and Unitary operators.	
LO4	To understand the preliminaries of Banach Algebra.	
LO5	To study on commutative Banach Algebras.	
Unit	Content	Hours
1	Banach Spaces: Definition and some examples – Continuous linear transformations – The Hahn-Banach theorem- The natural imbedding of N in N^{**} . Chapter9: Sections 46-49	18
2	Banach Spaces and Hilbert Spaces: The open mapping theorem – The conjugate of an Operator-The definition and some simple properties–Orthogonal complements–Orthonormal sets. Chapter9: Sections 50-51 Chapter10: Sections 52-54	18
3	Hilbert Spaces: The conjugate space H^* -The adjoint of an operator–self- adjoint operators-Normal and unitary operators – Projections. Chapter10: Sections 55-59	18
4	General Preliminaries on Banach Algebras: The definition and some examples – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius– The radical and semi- simplicity. Chapter12: Sections 64-69	18
5	The Structure of Commutative Banach Algebras: The Gelfand mapping – Applications of the formula $r(x) = \lim \ x^n\ ^{1/n}$ – Involutions in Banach algebras-The Gelfand-Neumark theorem. Chapter13: Sections 70-73	18
	Total	90
	Theory 80% problem 20%	

CO	Course Outcomes							
	The students will be able to							
CO1	Understand Banach spaces and Transformations on Banach Spaces.							
CO2	Apply conjugate operator and Open mapping theorem.							
CO3	Work on the Hilbert spaces.							
CO4	Classify on Banach algebra and spectral radius.							
CO5	Construct the concept of Gelfand- Neumark theorem and its applications.							
Text books								
1	G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1963.							
Reference Books								
1	W. Rudin, Functional Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1973.							
2	B.V. Limaye, Functional Analysis, New Age International, 1996.							
3	C. Goffman and G. Pedrick, First course in Functional Analysis, Prentice Hall of India, New Delhi, 1987.							
4	E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978.							
5	M. Thamban Nair, Functional Analysis, A First course, Prentice Hall of India, New Delhi, 2002.							
Website and e-Learning Source								
1	http://mathforum.org ,							
2	http://www.opensource.org/							
3	http://en.wikipedia.org							

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	3	2	3	2	2
CO2	2	2	3	2	3	3	3	2	2	3	3
CO3	3	2	3	2	3	3	3	2	3	3	3
CO4	2	2	3	2	3	3	3	2	3	2	3
CO5	3	2	2	3	3	3	3	2	3	2	3
Total	13	10	14	11	15	15	15	10	14	12	14
Average	2.6	2	2.8	2.2	3	3	3	2	2.8	2.4	2.8

3 – Strong, 2- Medium, 1- Low

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC42	Differential Geometry	Core	3	1	1	1	5	6	25	75	100
Learning Objectives											
LO1	To study on space curves, characterizations and Fundamental Existence theorem.										
LO2	To learn intrinsic properties and metrics of surface.										
LO3	To analysis Geodesics and Geodesic curvature problems.										
LO4	To study non- intrinsic properties of a surface and applicability.										
LO5	To gain knowledge on differential geometry of surface and Hilbert's lemma.										
Unit	Content									Hours	
1	Space curves: Definition of a space curve – Arc length – tangent – normal and binormal – curvature and torsion of a curve given as the intersection of two surfaces – contact between curves and surfaces- tangent surface- involutes and evolutes- Intrinsic equations – Fundamental Existence Theorem for space curves- Helices. Chapter I: Sections 1 - 9.									18	
2	Intrinsic properties of a surface: Definition of a surface – curves on a surface – Surface of revolution – Helicoids – Metric- Direction coefficients – families of curves- Isometric correspondence- Intrinsic properties. Chapter II: Sections 1 - 9.									18	
3	Geodesics: Geodesics – Canonical geodesic equations – Normal property of geodesics- Existence Theorems – Geodesic parallels – Geodesics curvature- Gauss- Bonnet Theorem – Gaussian curvature- surface of constant curvature. Chapter II: Sections 10 - 18.									18	
4	Local Non-intrinsic properties of a surface: The second fundamental form- Principal curvatures – Lines of curvature – Developable - Developable associated with space curves and with curves on surface - Minimal surfaces – Ruled surfaces. Chapter III: Sections 1 - 8.									18	
5	Local Non-intrinsic properties of a surface: Fundamental equations of surface theory-Fundamental existence theorem for surfaces. Differential Geometry of Surfaces in the Large: Introduction-Compact surfaces whose points are umbilic- Hilbert's lemma- Compact surfaces of constant Gaussian or mean curvature – Complete surfaces. Chapter III: Sections 9 - 11 Chapter IV: Sections 1 – 5									18	
	Total									90	
	Theory 80% problem 20%										

CO	Course Outcomes
	The students will be able to
CO1	Understand the concepts of a space curves and to compute curvature, torsion.
CO2	Classify the curves on surface and its intrinsic properties.
CO3	Compute problems on Geodesics.
CO4	Work on developable and non-intrinsic properties of a surface.
CO5	Express Hilbert's lemma and the fundamental existence theorem for surface theory.

Text books:

1	T.J. Willmore, An Introduction to Differential Geometry, Oxford University Press, (17th Impression) New Delhi 2002. (Indian Print)
---	--

Reference Books:

1	D. Somasundaram, Differential Geometry A First Course, Alpha Science International Limited,2005
2	Kobayashi. S. and Nomizu. K., Foundations of Differential Geometry, Inter science Publishers, 1963.
3	Wilhelm Klingenberg: A course in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1978.
4	J.A. Thorpe, Elementary topics in Differential Geometry, Undergraduate Texts in Mathematics, Springer - Verlag, 1979.
5	D.T. Struik, Lectures on Classical Differential Geometry, Addison – Wesley, Mass, 1950.

Website and e-Learning Source

1	http://mathforum.org
2	http://www.opensource.org , www.physicsforum.com

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	3	2	2	2	3
CO2	2	2	3	2	3	3	3	2	3	3	2
CO3	3	2	3	2	3	3	3	2	3	2	2
CO4	2	2	3	2	3	3	3	2	3	2	3
CO5	3	2	2	3	3	3	3	2	3	2	3
Total	13	10	14	11	15	15	15	10	11	11	13
Average	2.6	2	2.8	2.2	3	3	3	2	2.2	2.2	2.6

3 – Strong, 2- Medium, 1- Low

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAC43	Project	Core	0	0	5	1	5	6	25	75	100

Learning Objectives

LO1	Engage in a real-time project environment to apply theoretical knowledge for practical problem-solving.
LO2	Analyze different stages of project development and implementation while demonstrating effective project and collaboration.
LO3	Demonstrate technical proficiency, analytical skills, and professional ethics in executing the assigned project work.
LO4	Develop research project and innovative approaches relevant to the chosen project domain.
LO5	Strengthen communication, documentation, and presentation skills required for professional project execution.

REGULATIONS

1	Every student must undertake an individual project work in a relevant domain, preferably aligned with their area of specialization, during the course of study to gain practical and analytical exposure.
2	After completing the third semester, the student should identify, propose, and obtain approval for a suitable project topic to be executed during the fourth semester.
3	During the project period, students are expected to actively participate in all stages of the project, including analysis, design, implementation, and documentation.
4	A comprehensive project report must be prepared and submitted by the student in the prescribed institutional format. Students have to submit the copies of the thesis in the book form (size: 21.0 cm ×13.5 cm). Dissertation text should be typed in double line spacing and Times New Roman font size 12 and number of pages should be restricted to be maximum of 100 pages.
5	The project report submission will take place at the end of the fourth semester, followed by a presentation and viva voce evaluation during the semester examination.
6	The evaluation of the project work will be for 100 marks, comprising 25 internal, 50 project evaluation and 25 for viva-voice, assessed jointly by internal and external examiners. The external examiner shall be appointed from affiliated colleges of Parent University, University Departments, or any other affiliated colleges.
7	Students must secure at least 50% of the total marks to pass. Those who are absent/fail to meet this requirement must improve their performance and resubmit the project report in the next available attempt. The final report must include all prescribed sections and be submitted to the Controller of Examinations within the specified date.

CO	COURSE OUTCOMES
CO1	Identify and define a real-world problem, applying relevant concepts and methodologies to develop an effective project solution.
CO2	Cultivate independent thinking, critical analysis and collaborative skills throughout the project.
CO3	Demonstrate professional ethics, responsibility and effective project management abilities.
CO4	Communicate research and technical findings through well-structured documentation and presentations.
CO5	Enhance readiness for professional employment or further research by applying innovative and creative approaches to project development.

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAE41	Resource Management Techniques	Elective	2	1	1	1	4	5	25	75	100

Learning Objectives

LO1	To solve integer linear Programming problems.
LO2	To learn Decision making under different types and Decision Making with Utilities.
LO3	To understand CPM and PERT techniques in scheduling problems.
LO4	To classify various types of replacement problems and maintenance techniques.
LO5	To use differential calculus-based methods to obtain the optimal solutions.

Unit	Content	Hours
1	Integer linear Programming Cutting plane algorithm – Gomory's all and mixed integer cutting plane method. Chapter: 7 Sections 7.1-7.5	15
2	Decision Theory Steps in Decision theory Approach-Types of Decision-Making Environments-Decision making Under Uncertainty-Decision Making under Risk-Decision Tree Analysis. Chapter:11 Sections 11.1-11.5,11.7	15
3	Object Scheduling Network diagram representation – Critical path method – PERT- Project Time-Cost Trade off. Chapter:13 Sections 13.1-13.7	15
4	Replacement and Maintenance Models Mechanism of items-Replacement of items Deteriorates with time- Replacement of items that fail completely- Other Replacement Problems. Chapter: 17 Sections 17.1-17.5	15
5	Classical Optimization Theory Unconstrained Optimization-Constrained Optimization – Equality constraints — Lagrangian method – Kuhn– Tucker Necessary and Sufficient conditions. Chapter: 23 Sections 23.1-23.4	15
	Total	75
	Theory 40% Problem 60%	

CO	Course Outcomes
	The students will be able to
CO1	Formulate and analyze optimization problems.
CO2	Make efficient decisions and applying various decision-making criteria.
CO3	Effectively manage construction, project and to calculate CPM.
CO4	Solve replacement problems and maintenance models.
CO5	Classify optimization problems and work on Kuhn– Tucker problems.

Textbooks:

1	J.K. Sharma, Operations Research Theory and Applications (6 th Edition), Trinity Press, Laxmi Publications Pvt. Ltd., New Delhi, Reprint 2017.
---	---

Reference Books:

1	R. Panneerselvam, Operations Research, Prentice Hall of India, New Delhi, 2008.
2	Anderson, Quantitative Methods for Business ', 8th Edition, Thomson Learning, 2002.
3	Winston, Operations Research, Thomson Learning, 2003.
4	Vohra, Quantitative Techniques in Management, Tata Mc Graw Hill, 2002.
5	Anand Sarma, Operations Research, Himalaya Publishing House, 2003.

Website and e-Learning Source

1	http://mathforum.org/
2	http://ocw.mit.edu/ocwweb/Mathematics/
3	www.mathpages.com/
4	http://www.opensource.org/

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	2	2	2	2	2	2	3	2	2
CO3	3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	3	3	3	3	3	3	3
Total	15	12	14	13	14	13	14	14	14	13	13
Average	3	2.4	2.8	2.6	2.8	2.6	2.8	2.8	2.8	2.6	2.6

3 – Strong, 2- Medium, 1- Low

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									ClA	External	Total
24PMAE42	Financial Mathematics	Elective	2	1	1	1	4	5	25	75	100

Learning Objectives

LO1	To understand models and Neutral Probability Measure.
LO2	To learn stochastic and deterministic models.
LO3	To study Brownian Motion.
LO4	To understand the Stochastic Calculus.
LO5	To classify the Block-Scholes Model.

Unit	Content	Hours
1	Single Period Models: Definitions from Finance - Pricing a forward - One-step Binary Model - a ternary Model - Characterization of no arbitrage - Risk-Neutral Probability Measure.	15
2	Binomial Trees and Discrete Parameter Martingales: Multi-period Binary model - American Options - Discrete parameter martingales and Markov processes - Martingale Theorems - Binomial Representation Theorem –Overture to Continuous models.	15
3	Brownian Motion: Definition of the process - Levy's Construction of Brownian Motion - The Reflection Principle and Scaling - Martingales in Continuous time.	15
4	Stochastic Calculus: Non-differentiability of Stock prices - Stochastic Integration - Ito's formula - Integration by parts and Stochastic Fubini Theorem – Girsanov Theorem - Brownian Martingale Representation Theorem – Geometric Brownian Motion - The Feynman - Kac Representation.	15
5	Block-Scholes Model: Basic Block-Scholes Model - Block-Scholes price and hedge for European Options - Foreign Exchange - Dividends - Bonds– Market price of risk.	15
	Total	75
	Theory 80% problem 20%	

CO	Course Outcomes										
	The students will be able to										
CO1	Use discrete and continuous processes in financial modeling.										
CO2	Gain knowledge in the relationship between stochastic and deterministic models.										
CO3	Understand the roles of Put and Call options in risk reduction.										
CO4	Understand hedging strategies to reduce risk.										
CO5	Understand the role of the Black-Scholes partial differential equation and its boundary and final conditions in option pricing.										
Text books:											
1	Alison Etheridge, A Course in Financial Calculus, Cambridge University Press, Cambridge, 2002.										
Reference Books:											
1	Martin Boxter and Andrew Rennie, Financial Calculus: An Introduction to Derivatives Pricing, Cambridge University Press, Cambridge, 1996.										
2	Chapman and Hall, Introduction to Stochastic Calculus Applied to Finance, 1996.										
3	Marek Musiela and Marek Rutkowski, Martingale Methods in Financial Modeling, Springer Verlag, New York, 1988.										
4	Robert J. Elliott and P. Ekkehard Kopp, Mathematics of Financial Markets, Springer Verlag, New York, 2001 (3rd Printing)										
Website and e-Learning Source											
1	https://archive.org/details/financialmathema032436mbp										

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	3	2	2	2	3
CO2	2	2	3	2	3	3	3	2	3	3	2
CO3	3	2	3	2	3	3	3	2	3	2	2
CO4	2	2	3	2	3	3	3	2	3	2	3
CO5	3	2	2	3	3	3	3	2	3	2	3
Total	13	10	14	11	15	15	15	10	11	11	13
Average	2.6	2	2.8	2.2	3	3	3	2	2.2	2.2	2.6

3 – Strong, 2- Medium, 1- Low

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									ClA	External	Total
24PMAP41	Stochastic Processes	PEC	2	0	0	1	2	3	25	75	100

Learning Objectives

LO1	To understand the fundamentals of stochastic processes, classify Markov chains and their states.
LO2	To analyze the stability, structure of Markov chains using graph theory and statistical inference.
LO3	To know the model real-world systems using Poisson processes and their generalizations.
LO4	To apply birth-death processes and continuous-time Markov models to dynamic systems.
LO5	To solve Kolmogorov equations and first passage time problems by using Brownian motion, Wiener processes.

Unit	Content	Hours
1	Stochastic Processes Stochastic processes – Specification of Stochastic processes. Markov Chains: Definitions and Examples – Higher transition probabilities – Generalization of independent Bernoulli trials - Classification of States and Chains. Chapter1 :1.5; Chapter2 :2.1- 2.4	9
2	Markov Chains Stability of Markov system – Graph theoretic approach –Markov chain with denumerable number of states-Markov Chains with Continuous State Space Chapter2:2.6 -2.8 and 2.11.	9
3	Markov Processes with Discrete State Space Poisson process: Poisson process and Related distributions - Generalizations of Poisson process. Chapter3 :3.1 - 3.3	9
4	Markov Processes with Discrete State Space (Cont.....) Birth and death process – Markov processes with discrete state space (Continuous time Markov chain) - Erlang Process. Chapter3 :3.4-3.5 and 3.7	9
5	Markov Processes with Continuous State Space Introduction-Brownian motion – Weiner process – Differential equations for Weiner Process – Kolmogorov equations – First passage time distribution for Weiner process. Chapter4 :4.1 - 4.5	9
	Total	45
	Theory 60% problem 40%	

CO	Course Outcomes	
	The students will be able to	
CO1	Know the classification of stochastic processes.	
CO2	Know Markov chains and the stability condition.	
CO3	Understand Poisson process and its properties.	
CO4	Discuss on Poisson process and birth and death process.	
CO5	Understand Brownian process and Weiner process.	

Textbooks:

1	J. Medhi, Stochastic Processes (5 th Edition), New Academic Science Limited, New Delhi, 2022.
---	--

Reference Books:

1	S. Karlin, A first course in Stochastic Processes, (2 nd Edition), Academic Press, 1958.
2	U.N. Bhat, Elements of Applied Stochastic Processes, John Wiley Sons, 1972.
3	E. Cinlar, Introduction to Stochastic Processes, PHI, 1975.
4	S.K. Srinivasan and A. Vijayakumar, Stochastic Processes, Narosa Publishing House, 2003.

Website and e-Learning Source

1	http://mathforum.org
2	http://ocw.mit.edu/ocwweb/Mathematics
3	www.mathpages.com

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	2	2	2	2	3	2	3	2	3
CO3	3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	2	3	2	3
CO5	3	2	3	3	3	3	3	3	3	3	3
Total	15	12	14	13	14	14	15	13	15	13	15
Average	3	2.4	2.8	2.6	2.8	2.8	3	2.6	3	2.6	3

3 – Strong, 2- Medium, 1- Low

II YEAR: FOURTH SEMESTER

Course Code	Course Name	Category	L	T	P	S	Credits	Hours	Marks		
									CIA	External	Total
24PMAL41	Mathematical Modelling	SLC	2	0	1	1	2	4	25	75	100

Learning Objectives

LO1	To understand the fundamentals and significance of mathematical modelling in real-world situations.
LO2	To classify different types of mathematical models, identify their key characteristics and applications.
LO3	To develop and analyze differential equations including linear, non-linear and compartmental types.
LO4	To construct and interpret system models such as prey–predator, competition, and epidemic models using ordinary differential equations.
LO5	To explore the use of graph theory in mathematical modelling such as directed and signed graphs, to represent network-based systems.

Unit	Content	Hours
1	Mathematical Modelling Simple situations requiring mathematical modelling -Classification of Mathematical Models - Characteristics of mathematical models. Chapter1 :1.1, 1.3 -1.4.	12
2	Mathematical Modelling through ordinary differential equations of first order: Linear Growth and Decay Models. Non-Linear growth and decay models, Compartment models. Chapter2: 2.2 - 2.4.	12
3	Mathematical Modelling through system of Ordinary differential equations of first order: Mathematical Modelling in population dynamics- Mathematical Modelling of epidemics through systems of ordinary differential equations of first order. Chapter3 :3.1 - 3.2.	12
4	Mathematical Modelling through difference equations: The need for Mathematical modelling through difference equations: some simple models -Basic theory of linear difference equations with constant coefficients -Mathematical modelling through difference equations in economics and finance. Chapter 5: 5.1 - 5.3.	12
5	Mathematical modelling through Graphs Situations that can be modelled through graphs - Mathematical models in terms of directed graphs - Mathematical models in terms of signed graphs Chapter 7: 7.1 -7.3	12
	Total	60
	Theory 70% problem 30%	

CO	Course outcomes
	The students will be able to
CO1	Explain simple situations requiring mathematical modelling and determine the characteristics and classifications of such models.
CO2	Develop models using differential equations to represent linear and non-linear growth and decay processes, including compartmental systems.
CO3	Construct and analyze models using systems of first-order ordinary differential equations, including prey–predator, competition, and epidemic models.
CO4	Explain and apply the concept of difference equations in developing discrete-time mathematical models for various real-world scenarios.
CO5	Apply graph theory concepts to construct and analyze mathematical models using directed and signed graphs.
Text books:	
1	J N Kapur, Mathematical Modelling, New Age International, Publishers (2009).
Reference Books:	
1	D. N. Burghes, Modelling with Difference Equations, Ellis Harwood and John Wiley.
2	D. J. G. James and J. J. Macdonald, Case studies in Mathematical Modelling, Stanly Thames, Cheltonham.
3	M. Cross and A. O. Moscrcadini, The art of Mathematical Modelling, Ellis Harwood and John Wiley.
4	C. Dyson, Elvery, Principles of Mathematical Modelling, Academic Press, NewYork.
Website and e-Learning Source	
1	http://www.mathfoundation.com
2	https://nptel.ac.in

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	3	3	3	2	2	3	3	2	3	2
CO2	2	3	3	3	2	2	3	2	2	3	2
CO3	2	3	3	3	2	2	3	3	2	3	2
CO4	3	2	3	2	2	2	3	2	2	3	2
CO5	2	3	2	3	2	2	3	3	2	3	2
Total	11	14	14	14	10	10	15	13	10	15	10
Average	2.2	2.8	2.8	2.8	2	2	3	2.6	2	3	2

3 – Strong, 2- Medium, 1- Low