
MARUDHAR  KESARI JAIN COLLEGE FOR WOMEN 

                                    SUBJECT NAME: DATA MINING  

                                     SUBJECT CODE: CECA54A 

 

 

Unit-3: CONCEPTS OF PATTERN  

Patterns– Basic concepts– Pattern Evaluation Methods–Pattern Mining: Pattern Mining in 

Multilevel– Multidimensional space–Constraint–Based Frequent Pattern Mining– Mining High 

Dimensional Data and Colossal patterns– Mining compressed or Approximate patterns– Pattern 

Exploration and Application. Classification–Decision tree Induction– Bayes Classification methods– 

Rule based Classification– Model Evaluation and selection– Techniques to Improve Classification 

Accuracy– Other Classification methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PATTERNS AND CLASSIFICATION 

3.1 PATTERN MINING 

 

 Based on pattern diversity, pattern mining can be classified using the following 

criteria: 

 

1. Basic patterns: A frequent pattern may have several alternative 

forms, including a simple frequent pattern, a closed pattern, or a max-pattern. 

To review, a frequent pattern is a pattern (or itemset) that satisfies a minimum support 

threshold. A pattern p is a closed pattern if there is no superpattern p0 with the 

same support as p. Pattern p is a max-pattern if there exists no frequent superpattern 

of p. Frequent patterns can also be mapped into association rules, or other kinds 

of rules based on interestingness measures. Sometimes we may also be interested in 

infrequent or rare patterns (i.e., patterns that occur rarely but are of critical importance, 

or negative patterns (i.e., patterns that reveal a negative correlation between 

items). 

 

2.Based on the abstraction levels involved in a pattern: Patterns or association rules 

may have items or concepts residing at high, low, or multiple abstraction levels. For 

example, suppose that a set of association rules mined includes the following rules 



where X is a variable representing a customer: 

 

(buys.X, “computer”/)      buys.X, “printer ” 

(buys.X, “laptop computer”/)    buys.X, “color laser printer ” 

 

In rules above the items bought are referenced at different abstraction levels 

(e.g., “computer” is a higher-level abstraction of “laptop computer,” and “color laser 

printer” is a lower-level abstraction of “printer”). We refer to the rule set mined as 

consisting of multilevel association rules. If, instead, the rules within a given set do 

not reference items or attributes at different abstraction levels, then the set contains 

single-level association rules. 

 

3.Based on the number of dimensions involved in the rule or pattern: If the items 

or attributes in an association rule or pattern reference only one dimension, it is a 

single-dimensional association rule/pattern. For example, Rules  and  

single-dimensional association rules because they each refer to only one dimension , buys. 

If a rule/pattern references two or more dimensions, such as age, income, and buys, 

then it is a multidimensional association rule/pattern. The following is an example 

of a multidimensional rule: 

 

age.X, “20: : :29”/^income.(X, “52K : : :58K”/)     (buys.X, “iPad ”) 

4.Based on the types of values handled in the rule or pattern: If a rule involves 

associations between the presence or absence of items, it is a Boolean association rule. For 

example, Rules  are Boolean association rules obtained from market 

basket analysis. 

If a rule describes associations between quantitative items or attributes, then it 

is a quantitative association rule. In these rules, quantitative values for items or 

attributes are partitioned into intervals. Rule can also be considered a quantitative 

association rule where the quantitative attributes age and income have been 

discretized. 

 

5.Based on the constraints or criteria used to mine selective patterns: The patterns 

or rules to be discovered can be constraint-based (i.e., satisfying a set of userdefined 

constraints), approximate, compressed, near-match (i.e., those that tally 

the support count of the near or almost matching itemsets), top-k (i.e., the k most 

frequent itemsets for a user-specified value, k), redundancy-aware top-k (i.e., the 

top-k patterns with similar or redundant patterns excluded), and so on 

6.Based on kinds of data and features to be mined: Given relational and data 

warehouse data, most people are interested in itemsets. Thus, frequent pattern mining 

in this context is essentially frequent itemset mining, that is, to mine frequent sets 

of items. However, in many other applications, patterns may involve sequences and 

structures. For example, by studying the order in which items are frequently purchased, 

we may find that customers tend to first buy a PC, followed by a digital 

camera, and then a memory card. This leads to sequential patterns, that is, frequent 
subsequences (which are often separated by some other events) in a sequence 



of ordered events. 

7.Based on application domain-specific semantics: Both data and applications can be 

very diverse, and therefore the patterns to be mined can differ largely based on their 

domain-specific semantics. Various kinds of application data include spatial data, 

temporal data, spatiotemporal data, multimedia data (e.g., image, audio, and video 

data), text data, time-series data, DNA and biological sequences, software programs, 

chemical compound structures, web structures, sensor networks, social and information 

networks, biological networks, data streams, and so on. This diversity can lead 

to dramatically different pattern mining methodologies. 

 

8.Based on data analysis usages: Frequent pattern mining often serves as an 

intermediate step for improved data understanding and more powerful data analysis. For 

example, it can be used as a feature extraction step for classification, which is often 

referred to as pattern-based classification. Similarly, pattern-based clustering has 

shown its strength at clustering high-dimensional data. For improved data understanding, 

patterns can be used for semantic annotation or contextual analysis. Pattern 

analysis can also be used in recommender systems, which recommend information 

items (e.g., books, movies, web pages) that are likely to be of interest to the user 

based on similar users’ patterns. Different analysis tasks may require mining rather 

different kinds of patterns as well. 

 

3.2 PATTERN EVALUATION METHODS 

 

3.3  PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE 

Multilevel associations involve concepts at different abstraction levels. 

Multidimensional associations involve more than one dimension or predicate (e.g., rules that 

relate what a customer buys to his or her age). Quantitative association rules involve numeric 

attributes that have an implicit ordering among values (e.g., age). Rare patterns are patterns that 

suggest interesting although rare item combinations. Negative patterns show negative 

correlations between items. 

3.3.1 Mining Multilevel Associations 

For many applications, strong associations discovered at high abstraction levels, though 

with high support, could be commonsense knowledge. We may want to drill down to find novel 

patterns at more detailed levels. On the other hand, there could be too many scattered patterns at 

low or primitive abstraction levels, some of which are just trivial specializations of patterns at 

higher levels. Therefore, it is interesting to examine how to develop effective methods for mining 

patterns at multiple abstraction levels, with sufficient flexibility for easy traversal among 

different abstraction spaces. 



EXAMPLE: 

Mining multilevel association rules. Suppose we are given the task-relevant set of 

transactional data in  an AllElectronics store, showing the items purchased for each transaction. 

The concept hierarchy for the items is shown in Figure. A concept hierarchy defines a 

sequence of mappings from a set of low-level concepts to a higher-level, more general 

concept set. Data can be generalized by replacing low-level concepts within the data by 

their corresponding higher-level concepts, or ancestors, from a concept hierarchy. 

 

 

Using uniform minimum support for all levels: The same minimum support threshold is used 

when mining at each abstraction level. (e.g., for mining from “computer” downward to “laptop 

computer”). Both “computer” and “laptop computer” are found to be frequent, whereas “desktop 

computer” is not. 



 

Using reduced minimum support at lower levels (referred to as reduced support): Each 

abstraction level has its own minimum support threshold. 

 

3.3.2 Mining Multidimensional Associations 

  association rules that imply a single predicate, that is, the predicate buys. For 

instance, in mining our AllElectronics database, we may discover the Boolean association rule 

 buys(X, “digital camera”) ⇒ buys(X, “HP printer”).  

Following the terminology used in multidimensional databases, we refer to each distinct 

predicate in a rule as a dimension. Hence, we can refer to Rule as a single dimensional or intra 

dimensional association rule because it contains a single distinct predicate (e.g., buys) with 

multiple occurrences (i.e., the predicate occurs more than once within the rule). Such rules are 

commonly mined from transactional data. 

 Association rules that involve two or more dimensions or predicates can be referred to as 

multidimensional association rules. Rule  contains three predicates (age, occupation, and buys), 

each of which occurs only once in the rule. 

 age(X, “20...29”) ∧ buys(X, “laptop”)⇒buys(X, “HP printer”). 

 



3.3.3 Mining Quantitative Association Rules 

Relational and data warehouse data often involve quantitative attributes or measures. We 

can discretize quantitative attributes into multiple intervals and then treat them as nominal data in 

association mining. However, such simple discretization may lead to the generation of an 

enormous number of rules, many of which may not be useful. Here we introduce three methods 

that can help overcome this difficulty to discover novel association relationships: 

 (1) a data cube method,  

(2) a clustering-based method, and  

(3) a statistical analysis method to uncover exceptional behaviors. 

1. Data Cube–Based Mining of Quantitative Associations 

 The lattice of cuboids defining a data cube for the dimensions age, income, and buys. The 

cells of an n-dimensional cuboid can be used to store the support counts of the corresponding n-

predicate sets. The base cuboid aggregates the task-relevant data by age, income, and buys; the 

2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-D (apex) cuboid 

contains the total number of transactions in the task-relevant data. 

  

3.3.4 Mining Rare Patterns and Negative Patterns 

 All the methods presented so far in this chapter have been for mining frequent patterns. 

Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or patterns 

that reflect a negative correlation between items. These patterns are respectively referred to as 

rare patterns and negative patterns. In this subsection, we consider various ways of defining rare 

patterns and negative patterns, which are also useful to mine 

EXAMPLE: Rare patterns and negative patterns. In jewelry sales data, sales of diamond 

watches are rare; however, patterns involving the selling of diamond watches could be 



interesting. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or 

Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together is 

considered a negative (correlated) pattern. 

An infrequent (or rare) pattern is a pattern with a frequency support that is below (or 

far below) a user-specified minimum support threshold. However, since the occurrence 

frequencies of the majority of itemsets are usually below or even far below the minimum support 

threshold, it is desirable in practice for users to specify other conditions for rare patterns. For 

example, if we want to find patterns containing at least one item with a value that is over $500. 

3.4 CONSTRAINT-BASED FREQUENT PATTERN MINING 

 A data mining process may uncover thousands of rules from a given data set, most of 

which end up being unrelated or uninteresting to users. Often, users have a good sense of which 

“direction” of mining may lead to interesting patterns and the “form” of the patterns or rules they 

want to find. They may also have a sense of “conditions” for the rules, which would eliminate 

the discovery of certain rules that they know would not be of interest. Thus, a good heuristic is to 

have the users specify such intuition or expectations as constraints to confine the search space. 

This strategy is known as constraint-based mining. The constraints can include the following: 

 Knowledge type constraints: These specify the type of knowledge to be mined, such as 

association, correlation, classification, or clustering. 

 Data constraints: These specify the set of task-relevant data.  

Dimension/level constraints: These specify the desired dimensions (or attributes) of the data, 

the abstraction levels, or the level of the concept hierarchies to be used in mining. 

 Interestingness constraints: These specify thresholds on statistical measures of rule 

interestingness such as support, confidence, and correlation.  

Rule constraints: These specify the form of, or conditions on, the rules to be mined. Such 

constraints may be expressed as metarules (rule templates), as the maximum or minimum 

number of predicates that can occur in the rule antecedent or consequent, or as relationships 

among attributes, attribute values, and/or aggregates. 

3.4.1 Metarule-Guided Mining of Association Rules 

 Metarules allow users to specify the syntactic form of rules that they are interested in 

mining. The rule forms can be used as constraints to help improve the efficiency of the mining 

process. Metarules may be based on the analyst’s experience, expectations, or intuition regarding 

the data or may be automatically generated based on the database schema. 

EXAMPLE: Metarule-guided mining. Suppose that as a market analyst for AllElectronics you 

have access to the data describing customers (e.g., customer age, address, and credit rating) as 



well as the list of customer transactions. You are interested in finding associations between 

customer traits and the items that customers buy. However, rather than finding all of the 

association rules reflecting these relationships, you are interested only in determining which 

pairs of customer traits promote the sale of office software. A metarule can be used to specify 

this information describing the form of rules you are interested in finding. An example of such a 

metarule is 

  P1(X, Y) ∧ P2(X, W) ⇒ buys(X, “office software”), 

 where P1 and P2 are predicate variablesthat are instantiated to attributes from the given 

database during the mining process, X is a variable representing a customer, and Y and W take 

on values of the attributes assigned to P1 and P2, respectively. Typically, a user will specify a list 

of attributes to be considered for instantiation with P1 and P2. Otherwise, a default set may be 

used. 

3.4.2 Constraint-Based Pattern Generation: Pruning Pattern Space and Pruning Data 

Space 

 Rule constraints specify expected set/subset relationships of the variables in the mined 

rules, constant initiation of variables, and constraints on aggregate functions and other forms of 

constraints. Users typically employ their knowledge of the application or data to specify rule 

constraints for the mining task. These rule constraints may be used together with, or as an 

alternative to, metarule-guided mining. In this section, we examine rule constraints as to how 

they can be used to make the mining process more efficient. Let’s study an example where rule 

constraints are used to mine hybrid-dimensional association rules. 

EXAMPLE: Constraints for mining association rules. Suppose that AllElectronics has a sales 

multidimensional database with the following interrelated relations: 

item(item ID, item name, description, category, price)  

sales(transaction ID, day, month, year, store ID, city)  

trans item(item ID, transaction ID) 

Here, the item table contains attributes item ID, item name, description, category, and price; the 

sales table contains attributes transaction ID day, month, year, store ID, and city; and the two 

tables are linked via the foreign key attributes, item ID and transaction ID, in the table trans item. 

Suppose our association mining query is “Find the patterns or rules about the sales of which 

cheap items (where the sum of the prices is less than $10) may promote (i.e., appear in the same 

transaction) the sales of which expensive items (where the minimum price is $50), shown in the 

sales in Chicago in 2010.” 

 



3.5 MINING HIGH-DIMENSIONAL DATA AND COLOSSAL PATTERNS 

 The frequent pattern mining methods presented so far handle large data sets having a 

small number of dimensions. However, some applications may need to mine highdimensional 

data (i.e., data with hundreds or thousands of dimensions). Can we use the methods studied so far 

to mine high-dimensional data? The answer is unfortunately negative because the search spaces 

of such typical methods grow exponentially with the number of dimensions. 

 Researchers have overcome this difficulty in two directions. One direction extends a 

pattern growth approach by further exploring the vertical data format to handle data sets with a 

large number of dimensions (also called features or items, e.g., genes) but a small number of 

rows (also called transactions or tuples, e.g., samples). This is useful in applications like the 

analysis of gene expressions in bioinformatics, for example, where we often need to analyze 

microarray data that contain a large number of genes (e.g., 10,000 to 100,000) but only a small 

number of samples (e.g., 100 to 1000). The other direction develops a new mining methodology, 

called Pattern-Fusion, which mines colossal patterns, that is, patterns of very long length. 

3.5.1 Mining Colossal Patterns by Pattern-Fusion 

 Although we have studied methods for mining frequent patterns in various situations, 

many applications have hidden patterns that are tough to mine, due mainly to their immense 

length or size. Consider bioinformatics, for example, where a common activity is DNA or 

microarray data analysis. This involves mapping and analyzing very long DNA and protein 

sequences. Researchers are more interested in finding large patterns (e.g., long sequences) than 

finding small ones since larger patterns usually carry more significant meaning. We call these 

large patterns colossal patterns, as distinguished from patterns with large support sets. Finding 

colossal patterns is challenging because incremental mining tends to get “trapped” by an 

explosive number of midsize patterns before it can even reach candidate patterns of large size.  

EXAMPLE: The challenge of mining colossal patterns. Consider a 40 × 40 square table 

where each row contains the integers 1 through 40 in increasing order. Remove the integers on 

the diagonal, and this gives a 40 × 39 table. Add 20 identical rows to the bottom of the table, 

where each row contains the integers 41 through 79 in increasing order, resulting in a 60 × 39 

table . We consider each row as a transaction and set the minimum support threshold at 20. The 

table has an exponential number (i.e., 40 20  ) of midsize closed/maximal frequent patterns of 

size 20, but only one that is colossal: α = (41,42,...,79) of size 39. None of the frequent pattern 

mining algorithms that we have introduced so far can complete execution in a reasonable amount 

of time. 



 

  

 

3.6 MINING COMPRESSED OR APPROXIMATE PATTERNS:  

 A major challenge in frequent pattern mining is the huge number of discovered patterns.  

Using a minimum support threshold to control the number of patterns found has limited 

effect. Too low a value can lead to the generation of an explosive number of output patterns, 

while too high a value can lead to the discovery of only commonsense patterns. 

To reduce the huge set of frequent patterns generated in mining while maintaining high-

quality patterns, we can instead mine a compressed or approximate set of frequent patterns. Top-

k most frequent closed patterns were proposed to make the mining process concentrate on only 

the set of k most frequent patterns. Although interesting, they usually do not epitomize the k 

most representative patterns because of the uneven frequency distribution among itemsets. 

Constraint-based mining of frequent patterns  incorporates user-specified constraints to filter out 

uninteresting patterns.  

3.6.1 Mining Compressed Patterns by Pattern Clustering 



 Pattern compression can be achieved by pattern clustering. Clustering techniques 

are described in detail in Chapters 10 and 11. In this section, it is not necessary to know the fine 

details of clustering. Rather, you will learn how the concept of clustering can be applied to 

compress frequent patterns. Clustering is the automatic process of grouping like objects together, 

so that objects within a cluster are similar to one another and dissimilar to objects in other 

clusters. In this case, the objects are frequent patterns. The frequent patterns are clustered using a 

tightness measure called δ-cluster. A representative pattern is selected for each cluster, thereby 

offering a compressed version of the set of frequent patterns. 

 Before we begin, let’s review some definitions. An itemset X is a closed frequent 

itemset in a data set D if X is frequent and there exists no proper super-itemset Y of X such that 

Y has the same support count as X in D. An itemset X is a maximal frequent itemset in data set 

D if X is frequent and there exists no super-itemset Y such that X ⊂ Y and Y is frequent in D. 

EXAMPLE: Shortcomings of closed itemsets and maximal itemsets for compression. 

Table shows a subset of frequent itemsets on a large data set, where a, b, c, d, e, f represent 

individual items. There are no closed itemsets here; therefore, we cannot use closed frequent 

itemsets to compress the data. The only maximal frequent itemset is P3. However, we observe 

that itemsets P2, P3, and P4 are significantly different with respect to their support counts. If we 

were to use P3 to represent a compressed version of the data, we would lose this support count 

information entirely. From visual inspection, consider the two pairs (P1, P2) and (P4, P5). The 

patterns within each pair are very similar with respect to their support and expression. Therefore, 

intuitively, P2, P3, and P4, collectively, should serve as a better compressed version of the data. 

 

 So, let’s see if we can find a way of clustering frequent patterns as a means of 

obtaining a compressed representation of them. We will need to define a good similarity 

measure, cluster patterns according to this measure, and then select and output only a 

representative pattern for each cluster. Since the set of closed frequent patterns is a lossless 

compression over the original frequent patterns set, it is a good idea to discover representative 

patterns over the collection of closed patterns. 

 

3.6.2 Extracting Redundancy-Aware Top-k Patterns 



 Mining the top-k most frequent patterns is a strategy for reducing the number of patterns 

returned during mining. However, in many cases, frequent patterns are not mutually independent 

but often clustered in small regions. This is somewhat like finding 20 population centers in the 

world, which may result in cities clustered in a small number of countries rather than evenly 

distributed across the globe. Instead, most users would prefer to derive the k most interesting 

patterns, which are not only significant, but also mutually independent and containing little 

redundancy. A small set of k representative patterns that have not only high significance but also 

low redundancy are called redundancy-aware top-k patterns. 

 EXAMPLE: Redundancy-aware top-k strategy versus other top-k strategies. Figure 7.11 

illustrates the intuition behind redundancy-aware top-k patterns versus traditional top-k patterns 

and k-summarized patterns. Suppose we have the frequent patterns set shown in Figure 7.11(a), 

where each circle represents a pattern of which the significance is colored in grayscale. The 

distance between two circles reflects the redundancy of the two corresponding patterns: The 

closer the circles are, the more redundant the respective patterns are to one another. Let’s say we 

want to find three patterns that will best represent the given set, that is, k = 3. Which three should 

we choose? 

 Arrows are used to show the patterns chosen if using redundancy-aware top-k patterns 

(Figure b), traditional top-k patterns (Figure c), or k-summarized patterns (Figure d). In Figure 

(c), the traditional top-k strategy relies solely on significance: It selects the three most significant 

patterns to represent the set. 

  

In Figure (d), the k-summarized pattern strategy selects patterns based solely on nonredundancy. 

It detects three clusters, and finds the most representative patterns to be the “centermost’” pattern 

from each cluster. The selected patterns are considered “summarized patterns” in the sense that 



they represent or “provide a summary” of the clusters they stand for. By contrast, in Figure (d) 

the redundancy-aware top-k patterns make a trade-off between significance and redundancy. 

3.7 PATTERN EXPLORATION AND APPLICATION 

The automated generation of semantic annotations for frequent patterns. These are 

dictionary-like annotations. They provide semantic information relating to patterns, based on the 

context and usage of the patterns, which aids in their understanding. Semantically similar 

patterns also form part of the annotation, providing a more direct connection between discovered 

patterns and any other patterns already known to the users. 

  3.7.1 Semantic Annotation of Frequent Patterns 

 Pattern mining typically generates a huge set of frequent patterns without providing 

enough information to interpret the meaning of the patterns. In the previous section, we 

introduced pattern processing techniques to shrink the size of the output set of frequent patterns 

such as by extracting redundancy-aware top-k patterns or compressing the pattern set. These, 

however, do not provide any semantic interpretation of the patterns. It would be helpful if we 

could also generate semantic annotations for the frequent patterns found, which would help us to 

better understand the patterns. 

 “What is an appropriate semantic annotation for a frequent pattern?” Think about what 

we find when we look up the meaning of terms in a dictionary. Suppose we are looking up the 

term pattern. A dictionary typically contains the following components to explain the term: 

 1. A set of definitions, such as “a decorative design, as for wallpaper, china, or textile 

fabrics, etc.; a natural or chance configuration”  

2. Example sentences, such as “patterns of frost on the window; the behavior patterns of 

teenagers, . . .  

3. Synonyms from a thesaurus, such as “model, archetype, design, exemplar, motif, . . . .” 

3.7.2 Applications of Pattern Mining 

 Pattern mining is widely used for noise filtering and data cleaning as preprocessing in 

many data-intensive applications. We can use it to analyze microarray data, for instance, which 

typically consists of tens of thousands of dimensions (e.g., representing genes). Such data can be 

rather noisy. Frequent pattern data mining can help us distinguish between what is noise and 

what isn’t. We may assume that items that occur frequently together are less likely to be random 

noise and should not be filtered out. On the other hand, those that occur very frequently (similar 

to stopwords in text documents) are likely indistinctive and may be filtered out. Frequent pattern 

mining can help in background information identification and noise reduction. 



 Pattern mining often helps in the discovery of inherent structures and clusters hidden 

in the data. Given the DBLP data set, for instance, frequent pattern mining can easily find 

interesting clusters like coauthor clusters (by examining authors who frequently collaborate) and 

conference clusters (by examining the sharing of many common authors and terms). Such 

structure or cluster discovery can be used as preprocessing for more sophisticated data mining. 

 Although there are numerous classification methods research has found that frequent 

patterns can be used as building blocks in the construction of highquality classification models, 

hence called pattern-based classification. The approach is successful because (1) the 

appearance of very infrequent item(s) or itemset(s) can be caused by random noise and may not 

be reliable for model construction, yet a relatively frequent pattern often carries more 

information gain for constructing more reliable models; (2) patterns in general (i.e., itemsets 

consisting of multiple attributes) usually carry more information gain than a single attribute 

(feature); and (3) the patterns so generated are often intuitively understandable and easy to 

explain. Recent research has reported several methods that mine interesting, frequent, and 

discriminative patterns and use them for effective classification. 

 Frequent patterns can also be used effectively for subspace clustering in 

highdimensional space. Clustering is challenging in high-dimensional space, where the distance 

between two objects is often difficult to measure. This is because such a distance is dominated 

by the different sets of dimensions in which the objects are residing. 

 Pattern analysis is useful in the analysis of spatiotemporal data, time-series data, 

image data, video data, and multimedia data. An area of spatiotemporal data analysis is the 

discovery of colocation patterns. These, for example, can help determine if a certain disease is 

geographically colocated with certain objects like a well, a hospital, or a river. 

In time-series data analysis, researchers have discretized time-series values into multiple 

intervals (or levels) so that tiny fluctuations and value differences can be ignored. The data can 

then be summarized into sequential patterns, which can be indexed to facilitate similarity search 

or comparative analysis. 

 In image analysis and pattern recognition, researchers have also identified frequently 

occurring visual fragments as “visual words,” which can be used for effective clustering, 

classification, and comparative analysis. 

 Pattern mining has also been used for the analysis of sequence or structural data such 

as trees, graphs, subsequences, and networks. In software engineering, researchers have 

identified consecutive or gapped subsequences in program execution as sequential patterns that 

help identify software bugs. Copy-and-paste bugs in large software programs can be identified 

by extended sequential pattern analysis of source programs. Plagiarized software programs can 

be identified based on their essentially identical program flow/loop structures. Authors’ 



commonly used sentence substructures can be identified and used to distinguish articles written 

by different authors. 

Frequent and discriminative patterns can be used as primitive indexing structures 

(known as graph indices) to help search large, complex, structured data sets and networks. These 

support a similarity search in graph-structured data such as chemical compound databases or 

XML-structured databases. Such patterns can also be used for data compression and 

summarization. 

frequent patterns have been used in recommender systems, where people can find 

correlations, clusters of customer behaviors, and classification models based on commonly 

occurring or discriminative patterns. 

Finally, studies on efficient computation methods in pattern mining mutually enhance 

many other studies on scalable computation. For example, the computation and materialization 

of iceberg cubes using the BUC and Star-Cubing algorithms respectively share many similarities 

to computing frequent patterns by the Apriori and FP-growth algorithms. 

 


